868 resultados para Symmetric functions
Resumo:
An approach featuring s-parametrized quasiprobability distribution functions is developed for situations where a circular topology is observed. For such an approach, a suitable set of angle - angular momentum coherent states must be constructed in an appropriate fashion.
Resumo:
We employ the NJL model to calculate mesonic correlation functions at finite temperature and compare results with recent lattice QCD simulations. We employ an implicit regularization scheme to deal with the divergent amplitudes to obtain ambiguity-free, scale-invariant and symmetry-preserving physical amplitudes. Making the coupling constants of the model temperature dependent, we show that at low momenta our results agree qualitatively with lattice simulations.
Resumo:
Recently there have been suggestions that for a proper description of hadronic matter and hadronic correlation functions within the NJL model at finite density/temperature the parameters of the model should be taken density/temperature dependent. Here we show that qualitatively similar results can be obtained using a cutoff-independent regularization of the NJL model. In this regularization scheme one can express the divergent parts at finite density/temperature of the amplitudes in terms of their counterparts in vacuum.
Resumo:
We propose an approach which allows one to construct and use a potential function written in terms of an angle variable to describe interacting spin systems. We show how this can be implemented in the Lipkin-Meshkov-Glick, here considered a paradigmatic spin model. It is shown how some features of the energy gap can be interpreted in terms of a spin tunneling. A discrete Wigner function is constructed for a symmetric combination of two states of the model and its time evolution is obtained. The physical information extracted from that function reinforces our description of phase oscillations in a potential. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Here we explore the link between the moments of the Laguerre polynomials or Laguerre moments and the generalized functions (as the Dirac delta-function and its derivatives), presenting several interesting relations. A useful application is related to a procedure for calculating mean values in quantum optics that makes use of the so-called quasi-probabilities. One of them, the P-distribution, can be represented by a sum over Laguerre moments when the electromagnetic field is in a photon-number state. Consequently, the P-distribution can be expressed in terms of Dirac delta-function and derivatives. More specifically, we found a direct relation between P-distributions and the Laguerre factorial moments.
Resumo:
We present an analytic study of the finite size effects in sine-Gordon model, based on the semi-classical quantization of an appropriate kink background defined on a cylindrical geometry. The quasi-periodic kink is realized as an elliptic function with its real period related to the size of the system. The stability equation for the small quantum fluctuations around this classical background is of Lame type and the corresponding energy eigenvalues are selected inside the allowed bands by imposing periodic boundary conditions. We derive analytical expressions for the ground state and excited states scaling functions, which provide an explicit description of the flow between the IR and UV regimes of the model. Finally, the semiclassical form factors and two-point functions of the basic field and of the energy operator are obtained, completing the semiclassical quantization of the sine-Gordon model on the cylinder. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
By means of a well-established algebraic framework, Rogers-Szego functions associated with a circular geometry in the complex plane are introduced in the context of q-special functions, and their properties are discussed in detail. The eigenfunctions related to the coherent and phase states emerge from this formalism as infinite expansions of Rogers-Szego functions, the coefficients being determined through proper eigenvalue equations in each situation. Furthermore, a complementary study on the Robertson-Schrodinger and symmetrical uncertainty relations for the cosine, sine and nondeformed number operators is also conducted, corroborating, in this way, certain features of q-deformed coherent states.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)