962 resultados para Surface topography
Resumo:
In this paper an attempt has been made to evaluate the spatial variability of the depth of weathered and engineering bedrock in Bangalore, south India using Multichannel Analysis of Surface Wave (MASW) survey. One-dimensional MASW survey has been carried out at 58 locations and shear-wave velocities are measured. Using velocity profiles, the depth of weathered rock and engineering rock surface levels has been determined. Based on the literature, shear-wave velocity of 330 ± 30 m/s for weathered rock or soft rock and 760 ± 60 m/s for engineering rock or hard rock has been considered. Depths corresponding to these velocity ranges are evaluated with respect to ground contour levels and top surface levels have been mapped with an interpolation technique using natural neighborhood. The depth of weathered rock varies from 1 m to about 21 m. In 58 testing locations, only 42 locations reached the depths which have a shear-wave velocity of more than 760 ± 60 m/s. The depth of engineering rock is evaluated from these data and it varies from 1 m to about 50 m. Further, these rock depths have been compared with a subsurface profile obtained from a two-dimensional (2-D) MASW survey at 20 locations and a few selected available bore logs from the deep geotechnical boreholes.
Resumo:
The dissipation rate of turbulent kinetic energy (epsilon) is a key parameter for mixing in surface aerators. In particular, determination epsilon across the impeller stream, where the most intensive mixing takes place, is essential to ascertain that an appropriate degree of mixing is achieved. Present work by using commercial software VisiMix (R) calculates the energy dissipation rate in geometrically similar unbaffled surface aeration systems in order to scale-up the oxygen transfer process. It is found that in geometrically similar system, oxygen transfer rate is uniquely correlated with dissipation rate of energy. Simulation or scale-up equation governing oxygen transfer rate and dissipation rate of energy has been developed in the present work.
Resumo:
The dissipation rate of turbulent kinetic energy(e)is a key parameter for mixing in surface aerators. In particular, determination e across the impeller stream, where the most intensive mixing takes place, is essential to ascertain that an appropriate degree of mixing is achieved. Present work by using commercial software VisiMix calculates the energy dissipation rate in geometrically similar unbaffled surface aeration systems in order to scale-up the oxygen transfer process. It is found that in geometrically similar system,oxygen transfer rate is uniquely correlated with dissipation rate of energy. Simulation or scale-up equation governing oxygen transfer rate and dissipation rate of energy has been developed in the present work.
Resumo:
Surface effect on the four independent elastic constants of nanohoneycombs is investigated in this paper. The axial deformation of the horizontal cell wall is included, comparing to the Gibson's method, and the contributions of the two components of surface stress (i.e. surface residual stress and surface elasticity) are discussed. The result shows that the regular hexagonal honeycomb is not isotropic but orthotropic. An increase in the cell-wall thickness t leads to an increase in the discrepancy of the Young's moduli in both directions. Furthermore, the surface residual stress dominates the surface effect on the elastic constants when t < 15 nm (or the relative density <0.17), which is in contrast to that the surface elasticity does when t > 15 nm (or the relative density > 0.17) for metal Al. The present structure and theory may be useful in the design of future nanodevices.
Resumo:
Uropathogenic Escherichia coli (UPEC) are the major cause of urinary tract infections. For successful colonisation of the urinary tract, UPEC employ multiple surface-exposed or secreted virulence factors, including adhesins and iron uptake systems. Whilst individual UPEC strains and their virulence factors have been the focus of extensive research, there have been no outer membrane (OM) proteomic studies based on large clinical UPEC collections, primarily due to limitations of traditional methods. In this study, a high-throughput method based on tandem mass-spectrometry of EDTA heat-induced outer membrane vesicles (OMVs) was developed for the characterisation of the UPEC surface-associated proteome. The method was applied to compare the OM proteome of fifty-four UPEC isolates, resulting in the identification of 8789 proteins, consisting of 619 unique proteins, which were subsequently interrogated for their subcellular origin, prevalence and homology to characterised virulence factors. Multiple distinct virulence-associated proteins were identified, including two novel putative iron uptake proteins, an uncharacterised type of chaperone-usher fimbriae and various highly prevalent hypothetical proteins. Our results give fundamental insight into the physiology of UPEC and provide a framework for understanding the composition of the UPEC OM proteome.
Resumo:
The dispersion equation for hydromagnetic surface waves along a plasma-plasma interface has been solved as a function of the compressibility factor c 1/v A1, where c 1 and v A1 are the acoustic and Alfvén wave speed in one of the medium, for general wave propagation direction. Both slow and fast magnetosonic surface waves can exist. The nature and existence of these waves depends on the values of c 1/v A1 and theta, the angle of wave propagation. For low-beta plasmas only fast mode exists. The slow mode does not propagate below a critical value of c 1. When c 1 rarr infin the phase velocity of the slow wave tend to the Alfvén surface wave velocity in the incompressible media and for large theta the phase velocity of the fast wave approaches this value. The phase velocity of the slow wave increases whereas for the fast wave it decreases with increase in the angle theta.
Resumo:
Uniformity in bias tilt, for the polyvinyl alcohol(PVA)surface layer induced orientation of nematic liquid crystals, could be achieved for large area display panels, if one of the transparent electrodes is first directionally rubbed with fine abrasive; then both the electrodes coated with PVA, followed by directionally buffing the chemisorbed layers in the same direction. Uniformity may be due to increased 'train' configuration of the adsorbed macromolecule by falling on to microgrooves and maintaining the same sense of asymmetry for the looped segments.
Resumo:
Effective processing of powdered particles can facilitate powder handling and result in better drug product performance, which is of great importance in the pharmaceutical industry where the majority of active pharmaceutical ingredients (APIs) are delivered as solid dosage forms. The purpose of this work was to develop a new ultrasound-assisted method for particle surface modification and thin-coating of pharmaceutical powders. The ultrasound was used to produce an aqueous mist with or without a coating agent. By using the proposed technique, it was possible to decrease the interparticular interactions and improve rheological properties of poorly-flowing water-soluble powders by aqueous smoothing of the rough surfaces of irregular particles. In turn, hydrophilic polymer thin-coating of a hydrophobic substance diminished the triboelectrostatic charge transfer and improved the flowability of highly cohesive powder. To determine the coating efficiency of the technique, the bioactive molecule β-galactosidase was layered onto the surface of powdered lactose particles. Enzyme-treated materials were analysed by assaying the quantity of the reaction product generated during enzymatic cleavage of the milk sugar. A near-linear increase in the thickness of the drug layer was obtained during progressive treatment. Using the enzyme coating procedure, it was confirmed that the ultrasound-assisted technique is suitable for processing labile protein materials. In addition, this pre-treatment of milk sugar could be used to improve utilization of lactose-containing formulations for populations suffering from severe lactose intolerance. Furthermore, the applicability of the thin-coating technique for improving homogeneity of low-dose solid dosage forms was shown. The carrier particles coated with API gave rise to uniform distribution of the drug within the powder. The mixture remained homogeneous during further tabletting, whereas the reference physical powder mixture was subject to segregation. In conclusion, ultrasound-assisted surface engineering of pharmaceutical powders can be effective technology for improving formulation and performance of solid dosage forms such as dry powder inhalers (DPI) and direct compression products.
Resumo:
The system equations of a collisionless, unmagnetized plasma, contained in a box where a high frequency (HF) electric field is incident, are solved in the electrostatic approximation. The surface modes of the plasma in the semi-infinite and box geometry are investigated. In thi high frequency limit, the mode frequencies are not significantly changed by the HF field but their group velocities can be quite different. Two long wavelength low frequency modes, which are not excited in the absence of HF field, are found. These modes are true surface modes (decaying on one wavelength from the surface) unlike the only low frequency ion acoustic mode in the zero field case. In the short wavelength limit the low frequency mode occurs at omega i/ square root 2, omega i being the ion plasma frequency, as a result similar to the case of no HF field.
Resumo:
Macro and micromixing time represent two extreme mixing time scales,which governs the whole hydrodynamics characteristics of the surface aeration systems. With the help of experimental and numerical analysis, simulation equation governing those times scale has been presented in the present work.
Resumo:
Laser surface cladding was carried out on a creep-resistant MRI 153M magnesium alloy with a mixture of Al and Al2O3 powders using a pulsed Nd:YAG laser at scan speeds of 21, 42, 63 and 84 mm/s. The Al2O3 particles partially or completely melted during laser irradiation and re-solidified with irregular shapes in the size range of 5–60 µm along with a few islands as large as 500 µm, within the grain-refined Mg-rich dendritic matrix. More than an order of magnitude improvement in wear resistance after cladding was attributed to the presence of ultra-hard Al2O3 particles, increased solid solubility of Al and other alloying elements, and a very fine dendritic microstructure as a result of rapid solidification in the cladded layer. However, corrosion resistance of the laser cladded alloy was reduced by almost an order of magnitude compared to that of the as-cast alloy mainly due to the presence of cracks and pores in the cladded layer.
Resumo:
The electric field in certain electrostatic devices can be modeled by a grounded plate electrode affected by a corona discharge generated by a series of parallel wires connected to a DC high-voltage supply. The system of differential equations that describe the behaviour (i.e., charging and motion) of the conductive particle in such an electric field has been numerically solved, using several simplifying assumptions. Thus, it was possible to investigate the effect of various electrical and mechanical factors on the trajectories of conductive particles. This model has been employed to study the behaviour of coalparticles in fly-ash corona separators.
Resumo:
We investigate the effects of radiative heat losses and thermal conductivity on the hydromagnetic surface waves along a magnetic discontinuity in a plasma of infinite electrical conductivity. We show that the effects of radiative heat losses on such surface waves are appreciable only when values of the plasma pressure on the two sides of the discontinuity are substantially different. Overstability of a surface wave requires that the medium in which it gives larger first-order compression should satisfy the criterion of Field (1965). Possible applications of the study to magnetic discontinuities in solar corona are briefly discussed.
Resumo:
A modified DLTS technique is proposed for the direct measurement of capture cross-section of MOS surface states. The nature of temperature and energy dependence σn is inferred from data analysis. Temperature dependence of σn is shown to be consistent with the observed DLTS line shapes.