970 resultados para Structural and magnetic properties


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We here present a versatile process for the preparation of maghemite/polyaniline (gamma-Fe2O3/ PAn) nanocomposite films with macroscopic processibility, electrical conductivity, and magnetic susceptibility. The gamma-Fe2O3 nanoparticles are coated and the PAn chains are doped by anionic surfactants of omega-methoxypoly(ethylene glycol) phosphate (PEOPA), 4-dodecylbenzenesulfonic acid (DBSA), and 10-camphorsulfonic acid (CSA). Both the coated gamma-Fe2O3 and the doped PAn are soluble in common organic solvents, and casting of the homogeneous solutions gives free-standing nanocomposite films with gamma-Fe2O3 contents up to similar to 50 wt %. The morphology of the gamma-Fe2O3 nanoparticles are characterized by transmission electron microscopy, UV-vis spectroscopy, and X-ray diffractometry. The gamma-Fe2O3/PAn films prepared from chloroform/m-cresol solutions of DBSA-coated gamma-Fe2O3 and CSA-doped PAn are conductive (sigma = 82-237 S/cm) and superpapamagnetic, exhibiting no hysteresis at room temperature. The zero-field-cooled magnetization experiment reveals that the nanocomposite containing 20.8 wt % gamma-Fe2O3 has a blocking temperature (T-b) in the temperature region of 63-83 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnetic properties of naturally layered intermetallic compound SmMn2Si2 with textured structure have been studied. There exist a ferromagnetic transition at 35 K and two antiferromagnetic transitions at 120 and 230 K. The antiferromagnetic state below 230 K exhibits different magnetoresistance, with a negative magnetoresistance of 3%-4% for current I applied perpendicular to the c axis and with a positive magnetoresistance effect of about 4%-6% for current I parallel to the c axis. The observed magnetoresistance is likely to be related to magnetovolume effects. In the ferromagnetic state, a positive magnetoresistance with a maximum increase of 22% under an applied field of 5 T is observed at 4 K, and both H perpendicular to I and H parallel to I configurations show positive magnetoresistance. (C) 1997 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bi1-xLaxSrMn2O6 and BiSr1-xCaxMn2O6 are prepared by solid state reaction. They are n-type semiconductors with ferromagnetism at room temperture. When Bi is substituted partly by rare earth, a negative magnetoresistance effect is observed in the pellet of Bi1-xLaxSrMn2O6. There are semiconductor-metal transitions at 820 K in BiSrMn2O6. The transitions are attributed to the magnetic transition at high temperature. The substitution of Ca for Sr makes the transition temperature increase. However, when Bi is partly substituted by La, the solid solution does not change into metal. (C) 1996 Academic Press, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paramagnetic susceptibility of lanthanum manganite has been measured over a wide temperature range (100-1073 K). On the basis of the thermodynamic equilibria between the various manganese ions with different valence and spin states and the magnetic interactions between the various manganese ions, a semiempirical formula has been proposed to calculate the paramagnetic susceptibilities of lanthanum manganite at different temperatures. The results indicate that most of the discrepancies between the calculated and experimental reciprocal susceptibilities of lanthanum manganite are less than 10% and that the relative contents of the various manganese ions in lanthanum manganite vary with temperature. The relative content of the trivalent manganese ion with a high spin state is dominant over the whole temperature range, while be relative content of the tetravalent manganese ion with a high spin state decreases monotonously with increasing temperature. At 300 K the calculated relative content of the tetravalent manganese ion in lanthanum manganite is about 34%, which is in good agreement with the experimental result (30%). There are some divalent manganese ions present in lanthanum manganite from low temperature to high temperature. The ratio of the relative contents of the tetravalent and divalent manganese ions in the compound varies with temperature. Above 750 K the relative content of the tetravalent manganese ion is less than that of the divalent manganese ion. The variation in the electrical resistivity of lanthanum manganite with temperature has also been interpreted reasonably.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ceria (CeO2) is a technologically important rare earth material because of its unique properties and various engineering and biological applications. A facile and rapid method has been developed to prepare ceria nanoparticles using microwave with the average size 7 nm in the presence of a set of ionic liquids based on the bis (trifluoromethylsulfonyl) imide anion and different cations of 1-alkyl-3-methyl-imidazolium. The structural features and optical properties of the nanoparticles were determined in depth with X-ray powder diffraction, transmission electron microscope, N-2 adsorption-desorption technique, dynamic light scattering (DLS) analysis, FTIR spectroscopy, Raman spectroscopy, UV-vis absorption spectroscopy, and Diffuse reflectance spectroscopy. The energy band gap measurements of nanoparticles of ceria have been carried out by UV-visible absorption spectroscopy and diffuse reflectance spectroscopy. The surface charge properties of colloidal ceria dispersions in ethylene glycol have been also studied. To the best of our knowledge, this is the first report on using this type of ionic liquids in ceria nanoparticle synthesis. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A convenient microwave method in preparation of zinc oxide nanoparticles (ZnONPs) using an ionic liquid, trihexyltetradecylphosphonium bis{(trifluoromethyl)sulfonyl}-imide, [P-66614][NTf2], as a green solvent is described in this paper. To the best of our knowledge, there is no report for synthesizing any nanoparticle using this ionic liquid. Trihexyltetradecylphosphonium bis{(trifluoromethyl)sulfonyl}-imide has low interface tension and thus it can enhance the nucleation rate, which is favorable to the formation of smaller ZnONPs. The fabricated ZnONPs were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV-vis spectroscopy. The XRD pattern reveals that the ZnONPs have hexagonal wurtzite structure. The strong intensity and narrow width of ZnO diffraction peaks indicate that the resulting nanoparticles are of high crystallinity. The synthesized ZnONPs show direct band gap of 3.43 eV. The UV-vis absorption spectrum of ZnONPs dispersed in ethylene glycol at room temperature revealed a blue-shifted onset of absorption. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As an essential constituent of the outer membrane of Gram-negative bacteria, lipopolysaccharide contributes significantly to virulence and antibiotic resistance. The lipopolysaccharide biosynthetic pathway therefore serves as a promising therapeutic target for antivirulence drugs and antibiotic adjuvants. Here we report the structural-functional studies of D-glycero-beta-D-manno-heptose 7-phosphate kinase (HldA), an absolutely conserved enzyme in this pathway, from Burkholderia cenocepacia. HldA is structurally similar to members of the PfkB carbohydrate kinase family and appears to catalyze heptose phosphorylation via an in-line mechanism mediated mainly by a conserved aspartate, Asp270. Moreover, we report the structures of HldA in complex with two potent inhibitors in which both inhibitors adopt a folded conformation and occupy the nucleotide-binding sites. Together, these results provide important insight into the mechanism of HldA-catalyzed heptose phosphorylation and necessary information for further development of HldA inhibitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interest in mixed-valent perovskite manganese oxides of La\-xAxMnO^ (v4-divalent alkaline earth Ca, Sr or Ba), whose unusual properties were discovered nearly a half century ago, has recently been revived. The discovery of the colossal magnetoresistance and pressure effects introduced new questions concerning the complex interplay between lattice structure, magnetism and transport in doped perovskite manganites. In this study, we report our experimental investigations of pressure and magnetic field dependencies of La-i/sCai/sMnOs (LCMO) epitaxial films with various thickness on SrTiO$ substrate. An analysis of film thickness dependency of the resistivity of LCMO epitaxial films under pressure and magnetic field has been performed by taking into account substrate contributions. This verifies the correlation of lattice distortion with magnetic and transport properties. Strong dependencies of Mn — O — Mn bond bending and Mn — O bond stretching with pressure as well as Mn spin alignment with magnetic field, and the lattice distortion induced by the substrate are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single crystals of (Bal - xKx)Fe2As2 were prepared using the Sn flux method. Two heating methods were used to prepare the single crystals: the slow heating and rapid heating methods. It was found that the single crystals grown using the slow heating method were not superconducting due to a significant loss of potassium. When the rapid heating method was used, the single crystals were observed to be superconducting with the desired potassium concentration. The energy dispersive X-ray spectroscopy analysis indicated the presence of multiple phases in the single crystals. Using single crystal X-ray diffraction, the crystal structure of the single crystals was found to be 14/mmm tetragonal at room temperature. The magnetic measurements on the single crystals indicated the presence of multiple phases and magnetic impurities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lead chromium oxide is a photoconductive dielectric material tha t has great potential of being used as a room temperature photodetector. In this research, we made ceramic pellets of this compound as well as potassium doped compound Pb2-xKxCr05, where x=O, 0.05, 0.125. We also investigate the properties of the lanthanum doped sample whose chemical formula is Pb1.85Lao.15Cr05' The electronic, magnetic and thermal properties of these materials have been studied. Magnetization measurements of the Pb2Cr05 sample indicate a transition at about 310 K, while for the lanthanum doped sample the transition temperature is at about 295 K indicating a paramagnetic behavior. However, the potassium doped samples are showing the transition from paramagnetic state to diamagnetic state at different temperatures for different amounts of potassium atoms present in the sample. We have studied resistivity as a function of temperature in different gas environments from 300 K to 900 K. The resistivity measurement of the parent sample indicates a conducting to insulating transition at about 300 K and upon increasing the temperature further, above 450 K the sample becomes an ionic conductor. As temperature increases a decrease in resistance is observed in the lanthanum/potassium doped samples. Using Differential Scanning Calorimetry experiment an endothermic peak is observed for the Pb2Cr05 and lanthanum/potassium doped samples at about 285 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the results of crystal structure, magnetization and resistivity measurements of Bi doped LaVO3. X-ray diffraction (XRD) shows that if doping Bi in the La site is less than ten percent, the crystal structure of La1-xBixVO3 remains unchanged and its symmetry is orthorhombic. However, for higher Bi doping (>10%) composite compounds are found where the XRD patterns are characterized by two phases: LaVO3+V2O3. Energy-dispersive analysis of the x-ray spectroscopy (EDAX) results are used to find a proper atomic percentage of all samples. The temperature dependence of the mass magnetization of pure and single phase doped samples have transition temperatures from paramagnetic to antiferromagnetic region at TN=140 K. This measurement for bi-phasic samples indicates two transition temperatures, at TN=140 K (LaVO3) and TN=170 K (V2O3). The temperature dependence of resistivity reveals semiconducting behavior for all samples. Activation energy values for pure and doped samples are extracted by fitting resistivity versus temperature data in the framework of thermal activation process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Department of Physics, Cochin University of Science & Technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work deals with the investigations on sthe structural spectral and magnetic interactions of transition metal complexes of multidentate ligands from D1-2-pyridyl ketone and N(4)-Substituted thiosemicarbazides.Thiosemicarbazones are thiourea derivatives with the general formula R2N— C(S)—NH—N=CR2. In the solution state, the thiosemicarbazones exhibit the thionethiol tautomerism similar to the keto-enol tautomerism, and in solution state the thiol form predominates and a deprotonation at the thiolate group in alcoholic medium enhances the coordination abilities ofthe thiosemicarbazones.The magnetochemistry of metal complexes of di-2-pyridyl ketone is a current hot subject of research, which mainly owes to the excellent structural diversity of the complexes ranging from cubanes to clusters, with promising ferromagnetic outputs.Only few efforts were aimed at the magnetochemistry of metal complexes of thiosemicarbazones, and that too were concerned with the complexes of bisttltioscinicarbazones). However, as far as the monothiosemicarbazones are concerned, the magnetochemistry of transition metal complexes of di-2-pyridyl ketone thiosemicarbazones turned up quite unexplored. Consequently, an investigation into it appeared novel and promising to us and that prompted this study, which can be regarded as the initial step towards exploring the magnetochemistry of thiosemicarbazone complexes, especially of di-2-pyridyl ketone derivatives.We could successfully isolate single crystals suitable for X-ray diffraction for the first three ligands. To conclude, we have synthesized some new thiosemicarbazones and their transition metal complexes and studied their structural, spectral and magnetic attributes. Some ofthe complexes revealed interesting stereochemistries and possible bridging characteristics with spectroscopic evidences. Unfortunately, single crystal Xray diffraction studies could not be carried out for many of these interesting compounds due to the lack of availability of suitable quality single crystals. However, the magnetic studies provided support for the proposed stereochemistry giving evidences for their magnetically concentrated nature. The magnetic susceptibilities measured at six different temperatures in the 80-298 K range are fitted into different magnetic equations, which provided an idea about the magnetic behavior of the compounds under study. Some of the copper, oxovanadium, nickel and cobalt complexes are found to possess anomalous magnetic moments, i.e., they revealed no regular gradation with temperature. However, some other copper complexes are observed to be antiferromagnetic, due to super-exchange pathways. The manganese complexes and one of the cobalt complexes are also observed to be antiferromagnetic in nature. However, some nickel complexes have turned up to be ferromagnetic. Accordingly, the versatile stereoehemistry and magnetic behavior of the complexes studied, prompt us to conclude that the transition metal complexes of di-2-pyridyl ketone thiosemicarbazones are promising systems for potential magnetic applications.