955 resultados para Spin-stabilized satellite
Resumo:
A semi-analytical approach is proposed to study the rotational motion of an artificial satellite under the influence of the torque due to the solar radiation pressure and taking into account the influence of Earth's shadow. The Earth's shadow is introduced in the equations for the rotational motion as a function depending on the longitude of the Sun, on the ecliptic's obliquity and on the orbital parameters of the satellite. By mapping and computing this function, we can get the periods in which the satellite is not illuminated and the torque due to the solar radiation pressure is zero. When the satellite is illuminated, a known analytical solution is used to predict the satellite's attitude. This analytical solution is expressed in terms of Andoyer's variables and depends on the physical and geometrical properties of the satellite and on the direction of the Sun radiation flux. By simulating a hypothetical circular cylindrical type satellite, an example is exhibited and the results agree quite well when compared with a numerical integration. © 1997 COSPAR. Published by Elsevier Science Ltd.
Resumo:
A forward dispersion calculation is implemented for the spin polarizabilities γ1, ⋯, γ4 of the proton and the neutron. These polarizabilities are related to the spin structure of the nucleon at low energies and are structure-constants of the Compton scattering amplitude at script O sign(ω3). In the absence of a direct experimental measurement of these quantities, a dispersion calculation serves the purpose of constraining the model building, and of comparing with recent calculations in heavy baryon chiral perturbation theory. © 1998 Elsevier Science B.V.
Resumo:
We investigate the effect of different forms of relativistic spin coupling of constituent quarks in the nucleon electromagnetic form factors. The four-dimensional integrations in the two-loop Feynman diagram are reduced to the null-plane, such that the light-front wave function is introduced in the computation of the form factors. The neutron charge form factor is very sensitive to different choices of spin coupling schemes, once its magnetic moment is fitted to the experimental value. The scalar coupling between two quarks is preferred by the neutron data, when a reasonable fit of the proton magnetic momentum is found. (C) 2000 Elsevier Science B.V.
Resumo:
Lithium niobate (LiNbO3) thin films with 1/1 stoichiometry were prepared by a spin-coating from polymeric precursor method. The films deposited on silicon (100) substrates, were thermally treated from 400° to 600°C for 3 hours in order to study the influence of thermal treatment on the crystallinity, microstructure, grain size and roughness. X-ray diffraction (XRD) results showed that LiNbO3 phase crystallizes at low temperature (400°C). It was observed by scanning electron microscopy (SEM) that it is possible to obtain dense thin films at temperatures around 500°C. The atomic force microscopy (AFM) results showed that the grain size and roughness are strongly influenced by the annealing temperature.
Resumo:
Prochilodus lineatus, an abundant species in the Mogi-Guaçu river basin, represents a large part of the region's fishing potential. Karyotypic analyses based on classic cytogenetic techniques have revealed the presence of 54 metasubmetacentric type chromosomes, together with the occurrence of small supernumerary chromosomes with intra and interindividual variations. This paper describes the genomic organization of two families of satellite DNA in the P. lineatus genome. The chromosomal localization these two repetitive DNA families through fluorescence in situ hybridization (FISH) demonstrated that the SATH1 satellite DNA family, composed of approximately 900 bp, was located in the pericentromeric region of a group of chromosomes of the standard complement, as well as on all the B chromosomes. The SATH2 satellite family has a monomeric unit of 441 bp and was located in the pericentromeric regions of some chromosomes of the standard complement, but was absent in the B chromosomes. Double FISH analyses showed that these two families participate jointly in the pericentromeric organization of several chromosomes of this species. The data obtained in this study support the hypothesis that the B chromosomes derive from chromosomes of the standard complement, which are carriers of the SATH1 satellite DNA.
Resumo:
SAOZ (Systeme d'Analyse par Observations Zenithales) is a ground-based UV-Visible zenith-sky spectrometer installed between 1988 and 1995 at a number of NDSC stations at various latitudes on the globe. The instrument is providing ozone and NO2 vertical columns at sunrise and sunset using the Differential Optical Absorption Spectroscopy (DOAS) technique in the visible spectral range. The ERS-2 GOME Ozone Monitoring Experiment (GOME) in 1995 was the first satellite mission to provide a global picture of atmospheric NO 2 with reasonable spatial and temporal resolution. It was then followed by SCanning ImAging spectroMeter for Atmospheric ChartographY (SCIAMACHY) onboard ENVISAT in 2002, and Ozone Monitoring Instrument (OMI) onboard EOS-AURA in 2004, with a similar capacity to monitor total NO 2. All these instruments are nadir viewing mapping spectrometers, applying the DOAS technique in the visible for deriving the NO2 total column. Here we present the results of NO2 long-term comparisons between GOME and SAOZ for the whole period of GOME operation since 1995 at all latitudes - tropics, mid-latitudes and polar regions - in both hemispheres. Comparisons are also shown with the most recently available SCIAMACHY and OMI data in 2004-2005. Overall, the daytime satellite measurements (around noon) are found consistent with sunrise ground-based data, with an average smaller difference at the tropics and mid-latitudes than in the polar areas in the summer. The agreement is even improved after correcting for the NO2 photochemical change between sunrise and the satellite overpass using a box model. However, some seasonal dependence of the difference between ground-based and satellite total NO2 still remains, related to the accuracy of photochemical simulations and the set of NO2 air mass factors used in the retrievals of both systems.
Resumo:
We compute the analytical solutions of the generalized relativistic harmonic oscillator in 1+1 dimensions, including a linear pseudoscalar potential and quadratic scalar and vector potentials which have equal or opposite signs These are the conditions in which pseudospin or spin symmetries can be realized We consider positive and negative quadratic potentials and present their bound-state solutions for fermions and an-tifermions. We relate the spin-type and pseudospin-type spectra through charge conjugation and γ5 chiral transformations. Finally, we establish a relation of the solutions found with single-particle states of nuclei described by relativistic mean-field theories with tensor interactions and discuss the conditions in which one may have both nucleon and antin-ucleon bound states.
Resumo:
Aqueous dispersions of monoolein (MO) with a commercial hydrophobically modified ethyl hydroxyethyl cellulose ether (HMEHEC) have been investigated with respect to the morphologies of the liquid crystalline nanoparticles. Only very low proportions of HMEHEC are accepted in the cubic and lamellar phases of the monoolein-water system. Due to the broad variation of composition and size of the commercial polymer, no other single-phase regions were found in the quasi-ternary system. Interactions of MO with different fractions of the HMEHEC sample induced the formation of lamellar and reversed hexagonal phases, identified from SAXD, polarization microscopy, and cryogenic TEM examinations. In excess water (more than 90 wt %) coarse dispersions are formed more or less spontaneously, containing particles of cubic phase from a size visible by the naked eye to small particles observed by cryoTEM. At high polymer/MO ratios, vesicles were frequently observed, often oligo-lamellar with inter-lamellar connections. After homogenization of the coarse dispersions in a microfluidizer, the large particles disappeared, apparently replaced by smaller cubic particles, often with vesicular attachments on the surfaces, and by vesicles or vesicular particles with a disordered interior. At the largest polymer contents no proper cubic particles were found directly after homogenization but mainly single-walled defected vesicles with a peculiar edgy appearance. During storage for 2 weeks, the dispersed particles changed toward more well-shaped cubic particles, even in dispersions with the highest polymer contents. In some of the samples with low polymer/MO ratio, dispersed particles of the reversed hexagonal type were found. A few of the homogenized samples were freeze-dried and rehydrated. Particles of essentially the same types, but with a less well-developed cubic character, were found after this treatment. © 2007 American Chemical Society.
Resumo:
We show that the conditions which originate the spin and pseudospin symmetries in the Dirac equation are the same that produce equivalent energy spectra of relativistic spin-1/2 and spin-0 particles in the presence of vector and scalar potentials. The conclusions do not depend on the particular shapes of the potentials and can be important in different fields of physics. When both scalar and vector potentials are spherical, these conditions for isospectrality imply that the spin-orbit and Darwin terms of either the upper component or the lower component of the Dirac spinor vanish, making it equivalent, as far as energy is concerned, to a spin-0 state. In this case, besides energy, a scalar particle will also have the same orbital angular momentum as the (conserved) orbital angular momentum of either the upper or lower component of the corresponding spin-1/2 particle. We point out a few possible applications of this result. © 2007 The American Physical Society.
Resumo:
We use the Ogg-McCombe Hamiltonian together with the Dresselhaus and Rashba spin-splitting terms to find the g factor of conduction electrons in GaAs-(Ga,Al)As semiconductor quantum wells (QWS) (either symmetric or asymmetric) under a magnetic field applied along the growth direction. The combined effects of non-parabolicity, anisotropy and spin-splitting terms are taken into account. Theoretical results are given as functions of the QW width and compared with available experimental data and previous theoretical works. © 2007 Elsevier B.V. All rights reserved.
Resumo:
The measurement of the phase shift φ between the transmited and difracted beams interfering along the same direction behind the hologram recorded in a photorefractive crystal is directly and accurately measured using a self-stabilized recording technique. The measured phase shift as a function of the applied electric field allows computing the Debye screening lenght and the effectively applied field coefficient of an undoped Bi 12TiO 20 crystal. The result is in good agreement with the already available information about this sample. © 2008 American Institute of Physics.
Resumo:
Electric propulsion is now a succeful method for primary propulsion of deep space long duration missions and for geosyncronous satellite attitude control. Closed Drift Thruster, so called Hall Thruster or SPT (Stationary Plasma Thruster), was primarily conceived in USSR (the ancient Soviet Union) and, since then, it has been developed by space agencies, space research institutes and industries in several countries such as France, USA, Israel, Russian Federation and Brazil. In this work we present the main features of the Permanent Magnet Hall Thruster (PMHT) developed at the Plasma Laboratory of the University of Brasilia. The idea of using an array of permanent magnets, instead of an electromagnet, to produce a radial magnetic field inside the plasma channel of the thruster is very significant. It allows the development of a Hall Thruster with power consumption low enough to be used in small and medium size satellites. Description of a new vacuum chamber used to test the second prototype of the PMHT (PHALL II) will be given. PHALL II has an aluminum plasma chamber and is smaller with 15 cm diameter and will contain rare earth magnets. We will show plasma density and temperature space profiles inside and outside the thruster channel. Ion temperature measurements based on Doppler broadening of spectral lines and ion energy measurements are also shown. Based on the measured plasma parameters we constructed an aptitude figure of the PMHT. It contains the specific impulse, total thrust, propellant flow rate and power consumption necessary for orbit raising of satellites. Based on previous studies of geosyncronous satellite orbit positioning we perform numerical simulations of satellite orbit raising from an altitude of 700 km to 36000 km using a PMHT operating in the 100 mN - 500 mN thrust range. In order to perform these calculations integration techniques were used. The main simulation paraters were orbit raising time, fuel mass, total satellite mass, thrust and exaust velocity. We conclude comparing our results with results obtainned with known space missions performed with Hall Thrusters. © 2008 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
The ash of rice rind is a pozzolanic material that reacts with the calcium hydroxide (Ca (OH)2) forming bonding composites, when finely worn out and in water presence. Considering this behavior, the objective of the present work was to evaluate the potential use of this residue in the enrichment of the content of pozzolanic materials of a tropical soil stabilized with a commercial hydrated lime. The laboratory testing program incorporated unconfined compression strength tests performed on the soil and on its mixtures with contents of 8% of lime enriched with 5 and 10% of ash of rice rind in relation to the soil dry mass. The results of the testing program supported that the use of the residue was effective in increasing the degree of reactivity of the soil that was also directly related with the increase in the ash content and the period of cure of the mixtures.
Resumo:
Nowadays, we return to live a period of lunar exploration. China, Japan and India heavily invest in missions to the moon, and then try to implement manned bases on this satellite. These bases must be installed in polar regions due to the apparent existence of water. Therefore, the study of the feasibility of satellite constellations for navigation, control and communication recovers importance. The Moon's gravitational potential and resonant movements due to the proximity to Earth as the Kozai-Lidov resonance, must be considered in addition to other perturbations of lesser magnitude. The usual satellite constellations provide, as a basic feature, continuous and global coverage of the Earth. With this goal, they are designed for the smallest number of objects possible to perform a specific task and this amount is directly related to the altitude of the orbits and visual abilities of the members of the constellation. However the problem is different when the area to be covered is reduced to a given zone. The required number of space objects can be reduced. Furthermore, depending on the mission requirements it may be not necessary to provide continuous coverage. Taking into account the possibility of setting up a constellation that covers a specific region of the Moon on a non-continuous base, in this study we seek a criterion of optimization related to the time between visits. The propagation of the orbits of objects in the constellation in conjunction with the coverage constraints, provide information on the periods of time in which points of the surface are covered by a satellite, and time intervals in which they are not. So we minimize the time between visits considering several sets of possible constellations and using genetic algorithms.