912 resultados para Species Identification
Resumo:
The Neotropical genus Carrerapyrgota Aczel is restricted to the South America (Brazil and Argentina). The genus is composed of two previously described species, which are revised herein: C. miliaria Aczel and C. personata (Lutz & Lima). Two new Brazilian species are described: C. aczeli from Sao Paulo and C. bernardii from Bahia. Illustrations of the external morphology of adults and male and female terminalia are also included. An identification key to the species is presented, as well as a brief discussion of the biology and distribution of the genus.
Resumo:
Three species of Scorpiodoras are recognized: S. calderonensis, S. heckelii, and S. liophysus; the latter species is described herein. Scorpiodoras calderonensis occurs in the upper Amazon basin, including the Solimoes, Jurua, Japura, and Tefe rivers. Its type locality, originally stated as ""Calderon"", is elucidated as Tabatinga, Brazil. Scorpiodoras heckelii is the most widespread species, occurring in the Orinoco, Branco, Negro, and Amazonas rivers downstream of its confluence with Rio Negro. Scorpiodoras liophysus is only known from the middle Rio Madeira basin and presents a morphological feature unique within the genus: gas bladder without secondary bladder. An osteological description of the genus is provided, as well as redescriptions of S. calderonensis and S. heckelii. Additionally, a key allowing identification of the species is presented, as well as a biogeographic discussion.
Resumo:
A new species of Megommation, M. amazonicum n. sp., is described and illustrated. An identification key for the two species of this genus is provided. Additionally, the lectotype and paralectotype of Megalopta (Megaloptella) ipomoea Schrottky are designated.
Resumo:
Calliostoma tupinamba is a new species from Southeastern Brazil, ranging from southern Rio de Janeiro to northern Sao Paulo, and found only on coastal islands, on rocks and sessile invertebrates at 3 to 5 meters of depth. Shell and soft part morphology is described here in detail. Calliostoma tupinamba is mainly characterized by a depressed trochoid shell; eight slightly convex whorls; a sharply suprasutural carina starting on the third whorl and forming a peripheral rounded keel; and a whitish, funnel-shaped and deep umbilicus, measuring about 5%-10% of maximum shell width. Calliostoma tupinamba resembles C. bullisi Clench & Turner, 1960 in shape, but differs from it in being taller and wider, having a smaller umbilicus and lacking a strong and large innermost spiral cord at its base. Finally, an identification key of Brazilian Calliostoma species is presented.
Resumo:
In silico analyses of Leishmania spp. genome data are a powerful resource to improve the understanding of these pathogens' biology. Trypanosomatids such as Leishmania spp. have their protein-coding genes grouped in long polycistronic units of functionally unrelated genes. The control of gene expression happens by a variety of posttranscriptional mechanisms. The high degree of synteny among Leishmania species is accompanied by highly conserved coding sequences (CDS) and poorly conserved intercoding untranslated sequences. To identify the elements involved in the control of gene expression, we conducted an in silico investigation to find conserved intercoding sequences (CICS) in the genomes of L major, L infantum, and L braziliensis. We used a combination of computational tools, such as Linux-Shell, PERL and R languages, BLAST, MSPcrunch, SSAKE, and Pred-A-Term algorithms to construct a pipeline which was able to: (i) search for conservation in target-regions, (ii) eliminate CICS redundancy and mask repeat elements, (iii) predict the mRNA's extremities, (iv) analyze the distribution of orthologous genes within the generated LeishCICS-clusters, (v) assign GO terms to the LeishCICS-clusters. and (vi) provide statistical support for the gene-enrichment annotation. We associated the LeishCICS-cluster data, generated at the end of the pipeline, with the expression profile oft. donovani genes during promastigote-amastigote differentiation, as previously evaluated by others (GEO accession: GSE21936). A Pearson's correlation coefficient greater than 0.5 was observed for 730 LeishCICS-clusters containing from 2 to 17 genes. The designed computational pipeline is a useful tool and its application identified potential regulatory cis elements and putative regulons in Leishmania. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Miconia langsdorffii Cogn. (Melastomataceae), Roupala montana Aubl. (Proteaceae), Struthanthus syringifolius (Mart.) (Loranthaceae), and Schefflera vinosa (Cham. & Schltdl.) Frodin (Araliaceae) are plant species from the Brazilian Cerrado whose schistosomicidal potential has not yet been described. The crude extracts, fractions, the triterpenes betulin, oleanolic acid, ursolic acid and the flavonoids quercetin 3-O-beta-D-rhamnoside, quercetin 3-O-beta-D-glucoside, quercetin 3-O-beta-D-glucopyranosyl-(1-2)-alpha-L-rhamnopyranoside and isorhamnetin 3-O-beta-D-glucopyranosyl-(1-2)-alpha-L-rhamnopyranoside were evaluated in vitro against Schistosoma mansoni adult worms and the bioactive n-hexane fractions of the mentioned species were also analyzed by GC-MS. Betulin was able to cause worm death percentage values of 25% after 120 h (at 100 mu M), and 25% and 50% after 24 and 120 h (at 200 mu M), respectively; besides the flavonoid quercetin 3-O-beta-D-rhamnoside promoted 25% of death of the parasites at 100 mu M. Farther the flavonoids quercetin 3-O-beta-D-glucoside and quercetin 3-O-beta-D-rhamnoside at 100 mu M exhibited significantly reduction in motor activity, 75% and 87.5%, respectively. Biological results indicated that crude extracts of R. montana, S. vinosa, and M. langsdorffii and some n-hexane and EtOAc fractions of this species were able to induce worm death to some extent. The results suggest that lupane-type triterpenes and flavonoid monoglycosides should be considered for further antiparasites studies.
Resumo:
The plant pathogen Fusarium solani causes a disease root rot of common bean (Phaseolus vulgaris) resulting in great losses of yield in irrigated areas of the Southeast and Midwest regions of Brazil. Species of the genus Trichoderma have been used in the biological control of this pathogen as an alternative to chemical control. To gain new insights into the biocontrol mechanism used by Trichoderma harzianum against the phytopathogenic fungus, Fusarium solani, we performed a transcriptome analysis using expressed sequence tags (ESTs) and quantitative real-time PCR (RT-qPCR) approaches. A cDNA library from T. harzianum mycelium (isolate ALL42) grown on cell walls of F. solani (CWFS) was constructed and analyzed. A total of 2927 high quality sequences were selected from 3845 and 37.7% were identified as unique genes. The Gene Ontology analysis revealed that the majority of the annotated genes are involved in metabolic processes (80.9%), followed by cellular process (73.7%). We tested twenty genes that encode proteins with potential role in biological control. RT-qPCR analysis showed that none of these genes were expressed when T. harzianum was challenged with itself. These genes showed different patterns of expression during in vitro interaction between T. harzianum and F. solani. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Little has been published about the phytoseiid mite fauna of Thailand. This paper presents information about the morphology and distribution of phytoseiid mites collected in Thailand between 1991 and 2011 on different plant species, a list of the species presently known from that country, and a key for their identification. Twenty six species belonging to 11 genera were collected and identified in this study, six of which are reported for the first time from Thailand. In total, 38 species of phytoseiid species of 13 genera are reported, 29 of Amblyseiinae, seven of Phytoseiinae and two of Typhlodrominae.
Resumo:
Introduction: Culex flavivirus (CxFV) was first isolated in 2007 from Culex pipiens in Japan and then identified in several other countries. Characterization of the CxFV showed that all strains are related to the cell fusing agent virus. In this manuscript we report the first identification of CxFV in South America. Material and Methods: We have collected Culex sp. mosquitoes using BG-Sentinel traps and manual aspirators. They were pooled according to genus, species, sex and location. Viral RNA was extracted and multiplex nested PCR was performed to test the presence of Flavivirus. The positive samples were isolated in C6/36 cells and sequenced for phylogenetic analyses. Results: 265 female Culex mosquitoes pooled in 83 pools were tested with specific CxFV, Saint Louis encephalitis virus (SLEV) and West Nile virus (WNV) primers. Our sequence data indicated maximum sequence similarity of 97% with CxFV. Discussion: In this study we report the circulation of CxFV in an urban setting where SLEV had previously caused an outbreak. In terms of public health, this is an important finding due to the assumption that the previous exposition of mosquitoes to CxFV might lessen the susceptibility of these mosquitoes to other flaviviruses. Copyright (C) 2012 S. Karger AG, Basel
Resumo:
Free-living amoebae of the genus Acanthamoeba are the agents of both opportunistic and non-opportunistic infections and are frequently isolated from the environment. Of the 17 genotypes (T1-T17) identified thus far, 4 (T7, T8, T9, and T17) accommodate the rarely investigated species of morphological group I, those that form large, star-shaped cysts. We report the isolation and characterization of 7 new Brazilian environmental Acanthamoeba isolates, all assigned to group I. Phylogenetic analyses based on partial (similar to 1200 bp) SSU rRNA gene sequences placed the new isolates in the robustly supported clade composed of the species of morphological group I. One of the Brazilian isolates is closely related to A. comandoni (genotype T9), while the other 6, together with 2 isolates recently assigned to genotype T17, form a homogeneous, well-supported group (2-0% sequence divergence) that likely represents a new Acanthamoeba species. Thermotolerance, osmotolerance, and cytophatic effects, features often associated with pathogenic potential, were also examined. The results indicated that all 7 Brazilian isolates grow at temperatures up to 40 degrees C, and resist under hvperosmotic conditions. Additionally, media conditioned by each of the new Acanthamoeba isolates induced the disruption of SIRC and HeLa cell monolayers.
Resumo:
Spiroplasma endosymbionts are maternally transmitted bacteria that may kill infected sons resulting in the production of female-biased broods. The prevalence of male killers varies considerably both between and within species. Here, we evaluate the spatial and temporal status of male-killing and non-male-killing Spiroplasma infection in three Brazilian populations of Drosophila melanogaster, nearly a decade after the first occurrence report for this species. The incidence of the male-killing Spiroplasma ranged from close to 0 to 17.7 % (so far the highest estimate for a Drosophila species) with a suggestion of temporal decline in a population. We also found non-male-killing Spiroplasma coexisting in one population at lower prevalence (3-5 %), and we did not detect it in the other two. This may be taken as a suggestion of a spreading advantage conferred by the male-killing strategy. Sequencing two loci, we identified the phylogenetic position of Spiroplasma strains from the three localities, showing that all strains group closely in the poulsonii clade. Due to intensive sampling effort, we were able to test the association between Spiroplasma infections and another widespread endosymbiont, Wolbachia, whose prevalence ranged from 81.8 to 100 %. The prevalence of Wolbachia did not differ between Spiroplasma-infected and uninfected strains in our largest sample nor were the prevalences of the two endosymbionts associated across localities.
Resumo:
Approximately 370 brachyuran species have so far been recorded from the Brazilian coast, 123 of which have had their larval stages fully or partially described. The pictorial guide allows the identification of the first zoea of 110 species. The remaining 13 species with known larval stages are treated to the genus level because of difficulties in the morphological differentiation of closely related species.
Resumo:
Traditional phenotypic methods and commercial kits based on carbohydrate assimilation patterns are unable to consistently distinguish among isolates of Pichia guilliermondii, Debaryomyces hansenii and Candida palmioleophila. As result, these species are often misidentified. In this work, we established a reliable method for the identification/differentiation of these species. Our assay was validated by DNA sequencing of the polymorphic region used in a real-time PCR assay driven by species-specific probes targeted to the fungal ITS 1 region. This assay provides a new tool for pathogen identification and for epidemiological, drug resistance and virulence studies of these organisms.
Resumo:
Trypanosoma cruzi, the agent of Chagas disease, is a complex of genetically diverse isolates highly phylogenetically related to T. cruzi-like species, Trypanosoma cruzi marinkellei and Trypanosoma dionisii, all sharing morphology of blood and culture forms and development within cells. However, they differ in hosts, vectors and pathogenicity: T. cruzi is a human pathogen infective to virtually all mammals whilst the other two species are non-pathogenic and bat restricted. Previous studies suggest that variations in expression levels and genetic diversity of cruzipain, the major isoform of cathepsin L-like (CATL) enzymes of T. cruzi, correlate with levels of cellular invasion, differentiation, virulence and pathogenicity of distinct strains. In this study, we compared 80 sequences of genes encoding cruzipain from 25 T. cruzi isolates representative of all discrete typing units (DTUs TcI-TcVI) and the new genotype Tcbat and 10 sequences of homologous genes from other species. The catalytic domain repertoires diverged according to DTUs and trypanosome species. Relatively homogeneous sequences are found within and among isolates of the same DTU except TcV and TcVI, which displayed sequences unique or identical to those of TcII and TcIII, supporting their origin from the hybridization between these two DTUs. In network genealogies, sequences from T. cruzi clustered tightly together and closer to T. c. marinkellei than to T. dionisii and largely differed from homologues of T. rangeli and T. b. brucei. Here, analysis of isolates representative of the overall biological and genetic diversity of T. cruzi and closest T. cruzi-like species evidenced DTU- and species-specific polymorphisms corroborating phylogenetic relationships inferred with other genes. Comparison of both phylogenetically close and distant trypanosomes is valuable to understand host-parasite interactions, virulence and pathogenicity. Our findings corroborate cruzipain as valuable target for drugs, vaccine, diagnostic and genotyping approaches.
Resumo:
We investigated the clinical impact of human coronaviruses (HCoV) OC43, 229E, HKU1 and NL63 in pediatric patients with cystic fibrosis (CF) during routine and exacerbation visits. A total of 408 nasopharyngeal aspirate samples were obtained from 103 patients over a 1-year period. Samples positive for HCoV were submitted for nucleotide sequencing to determine the species. Nineteen samples (4.65%) were positive for HCoV, of which 8 were positive for NL63, 6 for OC43, 4 for HKU1, and 1 for 229E. Identification of HCoV was not associated with an increased rate of respiratory exacerbations, but NL63-positive patients had higher exacerbation rates than patients who were positive for other HCoV species.