865 resultados para Sortase A inhibitors
Resumo:
Introduction: In the last few years a significant number of papers have related the use of proton-pump inhibitors (PPIs) to potential serious adverse effects that have resulted in social unrest. Objective: The goal of this paper was to provide a literature review for the development of an institutional position statement by Sociedad Española de Patología Digestiva (SEPD) regarding the safety of long-term PPI use. Material and methods: A comprehensive review of the literature was performed to draw conclusions based on a critical assessment of the following: a) current PPI indications; b) vitamin B12 deficiency and neurological disorders; c) magnesium deficiency; d) bone fractures; e) enteric infection and pneumonia; f) interactions with thienopyridine derivatives; e) complications in cirrhotic patients. Results: Current PPI indications have remained unchanged for years now, and are well established. A general screening of vitamin B12 levels is not recommended for all patients on a PPI; however, it does seem necessary that magnesium levels be measured at therapy onset, and then monitored in subjects on other drugs that may induce hypomagnesemia. A higher risk for bone fractures is present, even though causality cannot be concluded for this association. The association between PPIs and infection with Clostridium difficile is mild to moderate, and the risk for pneumonia is low. In patients with cardiovascular risk receiving thienopyridines derivatives it is prudent to adequately consider gastrointestinal and cardiovascular risks, given the absence of definitive evidence regardin potential drug-drug interactions; if gastrointestinal risk is found to be moderate or high, effective prevention should be in place with a PPI. PPIs should be cautiously indicated in patients with decompensated cirrhosis. Conclusions: PPIs are safe drugs whose benefits outweigh their potential side effects both short-term and long-term, provided their indication, dosage, and duration are appropriate.
Resumo:
Mushrooms have the ability to promote apoptosis in tumor cell lines, but the mechanism of action is not quite well understood. Inhibition of the interaction between Bcl-2 and pro-apoptotic proteins could be an important step that leads to apoptosis. Therefore, the discovery of compounds with the ability to inhibit Bcl-2 is an ongoing research topic in drug discovery. In this study, we started by analyzing Bcl-2 experimental structures that are currently available in Protein Data Bank database. After analysis of the more relevant Bcl-2 structures, 4 were finally selected. An analysis of the best docking methodology was then performed using a cross-docking and re-docking approach while testing 2 docking softwares: AutoDock 4 and AutoDock Vina. Autodock4 provided the best docking results and was selected to perform a virtual screening study applied to a dataset of 40 Low Molecular Weight (LMW) compounds present in mushrooms, using the selected Bcl-2 structures as target. Results suggest that steroid are the more promising family, among the analyzed compounds, and may have the ability to interact with Bcl-2 and this way promoting tumor apoptosis. The steroids that presented lowest estimated binding energy (ΔG) were: Ganodermanondiol, Cerevisterol, Ganoderic Acid X and Lucidenic Lactone; with estimated ΔG values between -8,45 and -8,23 Kcal/mol. A detailed analysis of the docked conformation of these 4 top ranked LMW compounds was also performed and illustrates a plausible interaction between the 4 top raked steroids and Bcl-2, thus substantiating the accuracy of the predicted docked poses. Therefore, tumoral apoptosis promoted by mushroom might be related to Bcl-2 inhibition mediated by steroid family of compounds.
Resumo:
The B cell CLL/lymphoma-2 (Bcl-2) family is functionally classified as either anti-apoptotic or pro-apoptotic, and the regulation of its interactions dictates survival or commitment to apoptosis. Bcl-2 family is also implicated in a wide range of diseases. In some types of cancers, including lymphomas and epithelial cancers, protein overexpression of anti-apoptotic Bcl-2 family, such as the Bcl-2 protein is indicative of cancer in an advanced stage, with a poor prognosis and resistant to chemotherapy [1]. Several reports indicate that mushrooms have the ability to promote apoptosis in tumour cell lines, but the mechanism of action is not fully understood. Inhibition of the interaction between Bcl-2 (anti-apoptotic protein) and proapoptotic proteins could be an important step in the mechanism of mushroom induced apoptosis. Therefore, the discovery of compounds with the capacity to inhibit Bcl-2 is an ongoing research topic on cancer therapy. In this work, docking studies were performed using a dataset of 40 low molecular weight (LMW) compounds present in mushrooms. The docking software AutoDock 4 was used and docking studies were performed using 5 selected Bcl-2 crystal structures as targets. Compounds with the lowest predicted binding energy (predΔG) are expected to be the more potent inhibitors. Among the tested compounds, steroids presented the lowest predΔG with several exhibiting values below -9 kcal/mol. The results are corroborated by several reports that state that steroids induce apoptosis in several tumor cells. It is thus feasible that they might act by preventing Bcl-2 from forming complexes with the respective proapoptotic protein interaction partners, namely Bak, Bax, and Bim. Moreover, previous studies on our research group demonstrated that 48 h treatment of MCF-7 cells (breast carcinoma) with Suillus collinitus methanolic extract caused a decrease in Bcl-2, highlighting the antitumor potential of this mushroom species [2]. In conclusion, the process of apoptosis promoted by mushroom extracts may be related to the inhibition of Bcl-2 by the steroid derivatives herein studied. However, further studies are needed to confirm this hypothesis.
Resumo:
International audience
Resumo:
Os objetivos a atingir em 2020 no que respeita ao processo de investigação e desenvolvimento de medicamentos estão claramente focados na redução em termos temporais na investigação pré-clínica e clínica e na diminuição da taxa de atrito entre as novas moléculas. De forma a atingir estes objetivos, um novo conceito tem sido desenvolvido e aplicado a este complexo e moroso processo, este é a Farmacologia Quantitativa e de Sistemas. Além disso, esta abordagem inovadora pode ser crucial para o tratamento de determinados tipos de tumores cerebrais letais – Glioblastoma Multiforme (GBM) – que permanecem um desafio terapêutico, e por tanto, uma doença com um destino fatal para os doentes. Por estas razões, esta dissertação de mestrado apresenta uma especial relevância, tendo por objetivos avaliar o potencial impacto e importância biológica da variação de parâmetros farmacológicos, para além da potência, no contexto da resposta celular ao fármaco, pela avaliação da perturbação induzida em células do GBM por inibidores do PDK1 e pela realização de uma caracterização multiparamêtrica dose-resposta destas novas moléculas. A presente dissertação assume em Portugal a vanguarda na área da Farmacologia Quantitativa e de Sistemas aplicada ao processo de investigação e desenvolvimento de medicamentos. Em última estância, esta dissertação poderá contribuir para uma melhor previsão dos fármacos durante este processo, significando assim possíveis vantagens para os utentes, indústrias farmacêuticas, institutos de investigação, governo e institutos superiores.
Resumo:
Proton-pump inhibitors (PPIs) are one of the most active ingredients prescribed in Spain. In recent decades there has been an overuse of these drugs in both outpatient clinics and hospitals that has lead to a significant increase in healthcare spending and to an increase in the risk of possible side effects. It is important for health professionals to know the accepted indications and the correct doses for the use of these drugs. On the market there are different types of PPI: omeprazole, pantoprazole, lansoprazole, rabeprazole and esomeprazole. Omeprazole is the oldest and most used PPI, being also the cheapest. Although there are no important differences between PPIs in curing diseases, esomeprazole, a new-generation PPI, has proved to be more effective in eradicating H. pylori and in healing severe esophagitis compared to other PPIs. In recent years the use of generic drugs has spread; these drugs have the same bioavailability than the original drugs. In the case of PPIs, the few comparative studies available in the literature between original and generic drugs have shown no significant differences in clinical efficacy.
Resumo:
PARP inhibitors can be used to induce synthetic lethality in cells with bi-allelic BRCA1 and BRCA2 mutations. However the effect of PARP inhibitors in combination with radiation on cells with mono-allelic mutations of BRCA1 and BRCA2 is unknown. We have examined the cell survival response of lymphoblastoid cells derived from normal individuals and those derived from carriers of BRCA1 and BRCA2 mutations, following exposure to ionising radiation and the PARP inhibitor Olaparib. Two lymphoblastoid cell lines from normal individuals and three with mono-allelic mutations in BRCA1 and BRCA2 were exposed to increasing doses of gamma radiation either alone or in combination with 5 μM Olaparib. Cell survival was measured using the MTT assay. Exposure to increasing doses of gamma radiation caused a reduction in cell survival of all cell types. The combined exposure to gamma radiation and 5 μM Olaparib did not enhance cell kill in normal or BRCA2 heterozygote lymphoblastoid cells but significantly enhanced cell kill in cells derived from BRCA1 carriers (P = 0.02). The treatment of cancer patients carrying mutations in the BRCA1 gene with radiotherapy and the PARP inhibitor Olaparib may significantly enhance radiation induced normal tissue toxicity in these patients.
Resumo:
Sewage sludge applied to soils as a fertilizer often contains metals and linear alkylbenzene sulphonate (LAS) as contaminants. These pollutants can be transported to the aquatic environment where they can alter the phosphatase activity in living organisms. The acid phosphatase of algae plays important roles in metabolism such as decomposing organic phosphate into free phosphate and autophagic digestive processes. The order of in vitro inhi- bition of Pseudokirchneriella subcapitata acid phosphatase at the highest concentration tested was LAS[Hg2? = Al 3?[Se4? = Pb2?[Cd2?. A non-competitive inhibi- tion mechanism was obtained for Hg2? (Ki = 0.040 mM) and a competitive inhibition for LAS (Ki = 0.007 mM). In vivo studies with treated algae cultures showed that the inhibition of specific activity was observed in algae exposed during 7 days, in contrast to short term (24 h) treatments with both these chemicals. Our results suggest that the inhibition parameters in vitro did not markedly differ between the two chemicals. On the other hand, in vivo evaluations showed strong differences between both pollu- tants regarding the concentration values and the degree of response.
Entry inhibitors and Carbosilane dendrimers are potent inhibitors of cell-associated HIV-2 infection
Resumo:
Poster presented at the 2015 Keystone Symposia Conference X5: HIV Vaccines. Banff, Alberta, Canada, 22-27 March 2015
Resumo:
This is a non-final version of an article published in final form in AIDS. 2016 Jul 17;30(11):1691-701.
Resumo:
The phosphatidylinositide 3-kinases (PI3K) and mammalian target of rapamycin-1 (mTOR1) are two key targets for anti-cancer therapy. Predicting the response of the PI3K/AKT/mTOR1 signalling pathway to targeted therapy is made difficult because of network complexities. Systems biology models can help explore those complexities but the value of such models is dependent on accurate parameterisation. Motivated by a need to increase accuracy in kinetic parameter estimation, and therefore the predictive power of the model, we present a framework to integrate kinetic data from enzyme assays into a unified enzyme kinetic model. We present exemplar kinetic models of PI3K and mTOR1, calibrated on in vitro enzyme data and founded on Michaelis-Menten (MM) approximation. We describe the effects of an allosteric mTOR1 inhibitor (Rapamycin) and ATP-competitive inhibitors (BEZ2235 and LY294002) that show dual inhibition of mTOR1 and PI3K. We also model the kinetics of phosphatase and tensin homolog (PTEN), which modulates sensitivity of the PI3K/AKT/mTOR1 pathway to these drugs. Model validation with independent data sets allows investigation of enzyme function and drug dose dependencies in a wide range of experimental conditions. Modelling of the mTOR1 kinetics showed that Rapamycin has an IC50 independent of ATP concentration and that it is a selective inhibitor of mTOR1 substrates S6K1 and 4EBP1: it retains 40% of mTOR1 activity relative to 4EBP1 phosphorylation and inhibits completely S6K1 activity. For the dual ATP-competitive inhibitors of mTOR1 and PI3K, LY294002 and BEZ235, we derived the dependence of the IC50 on ATP concentration that allows prediction of the IC50 at different ATP concentrations in enzyme and cellular assays. Comparison of the drug effectiveness in enzyme and cellular assays showed that some features of these drugs arise from signalling modulation beyond the on-target action and MM approximation and require a systems-level consideration of the whole PI3K/PTEN/AKT/mTOR1 network in order to understand mechanisms of drug sensitivity and resistance in different cancer cell lines. We suggest that using these models in systems biology investigation of the PI3K/AKT/mTOR1 signalling in cancer cells can bridge the gap between direct drug target action and the therapeutic response to these drugs and their combinations.
Resumo:
Inhibitors are the main complication in the treatment of haemophilia. A high percentage of adult patients were infected in past decades by HIV and HCV through factor concentrates. This study compared the quality of life of patients with hemophilia (QoL) and illness behavior in adult patients with haemophilia according to the development of inhibitors and HIV or HCV co-infection. This is an observational clinical study. 69 adult patients with haemophilia participated. We used A36 Hemophilia-QoL and IBQ questionnaires to measure the QoL and illness behavior, respectively. The dependent variables were type and severity of haemophilia, type of treatment, development of inhibitors, HIV and HCV infection, or both. We observed significant differences in the perception of QoL and illness behavior in patients according to the development of inhibitor and coinfection with HIV-HCV. We obtained four groups: the first and second group, which comprise 67% of the sample, exhibit behavior patterns indicating good adaptation to the disease and good QoL. The other two groups, which comprise 33% of the sample show behavior that is not well adapted to the disease, and poor quality of life. The development of inhibitors itself does not influence the quality of life and illness behavior in patients with haemophilia. Patients infected with HIV or HCV do not have a worse illness behavior compared to those uninfected. The development of inhibitors and HIV-HCV co-infection has a negative impact on quality of life and illness behavior in patients with haemophilia.
Resumo:
A library of isoquinolinone and azepanone derivatives were screened for both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activity. The strategy adopted included (a) in vitro biological assays, against eel AChE (EeAChE) and equine serum BuChE (EqBuChE) in order to determine the compounds IC50 and their dose-response activity, consolidated by (b) molecular docking studies to evaluate the docking poses and interatomic interactions in the case of the hit compounds, validated by STD-NMR studies. Compound (1f) was identified as one of these hits with an IC50 of 89.5 mu M for EeAChE and 153.8 mu M for EqBuChE, (2a) was identified as a second hit with an IC50 of 108.4 mu M (EeAChE) and 277.8 mu M (EqBuChE). In order to gain insights into the binding mode and principle active site interactions of these molecules, (R)-(1f) along with 3 other analogues (also as the R-enantiomer) were docked into both RhAChE and hBuChE models. Galantamine was used as the benchmark. The docking study was validated by performing an STD-NMR study of (1f) with EeAChE using galantamine as the benchmark.
Resumo:
2016