870 resultados para Sociedades mercantiles
Resumo:
¿cuál es el camino más corto entre dos puntos del plano? ¿Y del espacio? ¿Y sobre una superficie cualquiera? ¿Qué forma tiene el tobogán más rápido? ¿Cuál es la curva plana que encierra mayor área entre todas las que tienen una misma longitud?
Resumo:
Se proponen tres demostraciones sobre el valor de la potencia de un punto con respecto a una circunferencia. La primera utiliza el método de la geometría analítica, y las propiedades de las soluciones de la ecuación de segundo grado. La segunda se basa sólo en el Teorema de Pitágoras. Y, la tercera utiliza el álgebra de vectores. Por último, se da el resultado de la potencia de un punto con respecto a una elipse. Con esto se intenta suplir el hueco en los libros de texto, de nivel de Bachillerato, que no recogen una demostración general sobre la constancia de la potencia del punto con respecto a una circunferencia.
Resumo:
Durante la noche del día 23 de noviembre de 1654, aproximadamente entre las diez y media y las doce y media de la noche, experimentó Pascal una especie de éxtasis religioso que lo impulsó a abandonar la matemática para dedicarse a la teología. Afortunadamente, una noche de 1658 en que un dolor de muelas u otra dolencia le impedía dormir, decidió dedicarse al estudio de la cicloide. Milagrosamente el dolor cesó, lo que interpretó Pascal como un signo de que el estudio de la matemática agradaba a Dios.
Resumo:
En este artículo se presentan una serie de experiencias sobre cómo aprovechar el entorno a la hora de tratar ciertos contenidos del currículo. Estas actividades están organizadas en función de la proximidad al aula: trabajaremos tanto en el entorno más próximo, el patio del instituto, como en uno más alejado, el ambiente rural. Las actividades contienen aspectos interdisciplinares que tratan de mostrar la parte práctica y utilitaria de las matemáticas, trabajando especialmente los contenidos procedimentales, así como ser un material didáctico útil para la atención a la diversidad. Las actividades propuestas aparecen recogidas en un cuaderno de campo de forma que los alumnos dispongan de un material donde reflejar de una forma ordenada y precisa los resultados obtenidos después de realizar cada una de ellas.
Resumo:
Demos un gran salto en el tiempo. En números anteriores narramos los avatares del problema isoperimétrico en Grecia y en los países islámicos medievales, respectivamente. Retomemos el enfoque dado por Pappus con el que llegó a la conclusión de que, para un área dada, el perímetro del hexágono regular es menor que el del cuadrado o el del triángulo equilátero, por lo que si el problema se plantea sobre una teselación regular del plano, un trozo finito del teselado regular hecho con hexágonos regulares es el que requiere menor perímetro. Bueno, aún no podemos detenernos porque hemos de hacer la demostración de la proposición de Pappus en 3D. El conocido MacLaurin (1698-1746), profesor de Aberdeen y Edimburgo, utilizó el método que a continuación presentamos. Lo hizo para poner de manifiesto la capacidad de la Geometría clásica como fuente de investigación en cualquier momento (conviene recordar que MacLaurin estaba centrado en analizar las posibilidades de los métodos infinitesimales que en su época emergían, lo que demostró sobradamente con su Treatise of Fluxions).
Resumo:
Hubiéramos deseado enfocar este artículo desde otra perspectiva. Su gestación había deambulado por otros derroteros. Es cierto que pensábamos escribir sobre el tremendo paréntesis que la historiografía clásica impone, en el campo de la matemáticas, al final de la edad media hispana y al llamado renacimiento, también en su versión peninsular. De la matemática «árabe» ya habíamos hablado en artículos anteriores, pero, una vez más, los medios de comunicación pretenden adiestrarnos en el lenguaje del odio, presentándolo bajo el prisma del choque cultural. Porque, una vez más, los paladines de la justicia y la democracia andan bombardeando un país musulmán respondiendo con iniquidad a la iniquidad. Razones más que suficientes, en nuestro caso, para cultivar la admiración, para revisar nuestra cultura a la luz de sus aportaciones. Las de «ellos», que fueron las nuestras, porque formábamos parte integrante de «esa» comunidad. Máxime cuando uno lee con dolor alegatos tan detestables –por racistas– y tan tendenciosos –por intencionadamente desinformados– como el de la señora Fallaci.
Resumo:
La comisión permanente del comité español del año mundial de las matemáticas 2000 reflexiona sobre el significado de las Matemáticas y su situación actual en España, así como sobre lo que ha supuesto la celebración de este año.
Resumo:
Desde una comunidad autónoma pequeña, La Rioja, y desde una Sociedad de Profesores recientemente constituida, «A prima» se cuentan las actividades realizadas en el 2000.
Resumo:
Con motivo de la declaración, por la UNESCO, del año 2000 como año mundial de las matemáticas, decidimos en nuestro centro, el IES n.° 3 de San Javier en Murcia, organizar una Semana de las Matemáticas, con la programación de diferentes actividades como actividades interdisciplinares, I Encuentros Matemáticos, Obra de teatro, exposiciones y conferencias.
Resumo:
En este artículo se presenta una interesante propiedad de los triángulos isósceles, usando como apoyo técnicas y propiedades de geometría básica.
Resumo:
El objetivo de este artículo es concienciarnos de la importancia de aprovechar los conocimientos de geometría que poseen nuestros alumnos para explicar el concepto de probabilidad. Queremos demostrar lo beneficioso que, desde un punto de vista didáctico, puede ser la unión de la geometría y la probabilidad
Resumo:
Conferencia leída con motivo del proyecto TIEM98 patrocinado por el Centr de Recerca Matemàtica del Institut d’Estudis Catalans.
Resumo:
Presentamos aquí una investigación sobre concepciones aleatorias en estudiantes de secundaria. Las respuestas de 277 estudiantes de dos grupos, con edades de 14 y 17 años, sirven para identificar las propiedades asociadas a secuencias aleatorias y deterministas. En ellas encontramos la capacidad de los alumnos para reconocer modelos matemáticos subyacentes en las secuencias de los resultados aleatorios y su utilización en los juicios sobre aleatoriedad. Por ellos sugerimos al final algunas implicaciones para la enseñanza de la probabilidad en estos niveles iniciales.
Resumo:
En este artículo se presenta una propuesta para introducir el concepto de función convexa de un modo diferente al habitual, complementario a éste, que se apoya en la relación entre convexidad de funciones y conjuntos convexos, y que no requiere que la función sea derivable. Además, permite obtener, de forma sencilla y unificada, las desigualdades numéricas clásicas a partir de la convexidad de ciertas funciones
Resumo:
Se presenta un módulo para Derive que permite ir más allá del simple dibujo de la gráfica de una función. Tan sólo basta cargarlo y definir en él la función F(x) sobre la que se quiere aplicar, para que las funciones que lo integran proporcionen sus elementos característicos: asíntotas, máximos y mínimos, inflexiones,...