928 resultados para Skeletal-muscle


Relevância:

70.00% 70.00%

Publicador:

Resumo:

During development the Australian fur seal transitions from a terrestrial, maternally dependent pup to an adult marine predator. Adult seals have adaptations that allow them to voluntarily dive at depth for long periods, including increased bradycardic control, increased myoglobin levels and haematocrit. To establish whether the profile of skeletal muscle also changes in line with the development of diving ability, biopsy samples were collected from the trapezius muscle of pups, juveniles and adults. The proportions of different fibre types and their oxidative capacity were determined. Only oxidative fibre types (Type I and IIa) were identified, with a significant change in proportions from pup to adult. There was no change in oxidative capacity of Type I and IIa fibres between pups and juveniles but there was a two-fold increase between juveniles and adults. Myoglobin expression increased between pups and juveniles, suggesting improved oxygen delivery, but with no increase in oxidative capacity, oxygen utilisation within the muscle may still be limited. Adult muscle had the highest oxidative capacity, suggesting that fibres are able to effectively utilise available oxygen during prolonged dives. Elevated levels of total creatine in the muscles of juveniles may act as an energy buffer when fibres are transitioning from a fast to slow fibre type.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Healthy living throughout the lifespan requires continual growth and repair of cardiac, smooth, and skeletal muscle. To effectively maintain these processes muscle cells detect extracellular stress signals and efficiently transmit them to activate appropriate intracellular transcriptional programs. The striated muscle activator of Rho signaling (STARS) protein, also known as Myocyte Stress-1 (MS1) protein and Actin-binding Rho-activating protein (ABRA) is highly enriched in cardiac, skeletal, and smooth muscle. STARS binds actin, co-localizes to the sarcomere and is able to stabilize the actin cytoskeleton. By regulating actin polymerization, STARS also controls an intracellular signaling cascade that stimulates the serum response factor (SRF) transcriptional pathway; a pathway controlling genes involved in muscle cell proliferation, differentiation, and growth. Understanding the activation, transcriptional control and biological roles of STARS in cardiac, smooth, and skeletal muscle, will improve our understanding of physiological and pathophysiological muscle development and function.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aims/hypothesis : Insulin's rate of entry into skeletal muscle appears to be the rate-limiting step for muscle insulin action and is slowed by insulin resistance. Despite its obvious importance, uncertainty remains as to whether the transport of insulin from plasma to muscle interstitium is a passive diffusional process or a saturable transport process regulated by the insulin receptor. Methods : To address this, here we directly measured the rate of 125I-labelled insulin uptake by rat hindlimb muscle and examined how that is affected by adding unlabelled insulin at high concentrations. We used mono-iodinated [125I]TyrA14-labelled insulin and short (5 min) exposure times, combined with trichloroacetic acid precipitation, to trace intact bioactive insulin. Results : Compared with saline, high concentrations of unlabelled insulin delivered either continuously (insulin clamp) or as a single bolus, significantly raised plasma 125I-labelled insulin, slowed the movement of 125I-labelled insulin from plasma into liver, spleen and heart (p < 0.05, for each) but increased kidney 125I-labelled insulin uptake. High concentrations of unlabelled insulin delivered either continuously (insulin clamp), or as a single bolus, significantly decreased skeletal muscle 125I-labelled insulin clearance (p < 0.01 for each). Increasing muscle perfusion by electrical stimulation did not prevent the inhibitory effect of unlabelled insulin on muscle 125I-labelled insulin clearance. Conclusions/interpretation : These results indicate that insulin's trans-endothelial movement within muscle is a saturable process, which is likely to involve the insulin receptor. Current findings, together with other recent reports, suggest that trans-endothelial insulin transport may be an important site at which muscle insulin action is modulated in clinical and pathological settings.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The research explored the effects of novel potential therapeutics interventions (made of genetically modified viral vectors) to improve skeletal muscle force, increase resistance to fatigue and promote muscle growth. The project tested wether these viruses could aid against non-degenerative muscle loss and enhance energy metabolism.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To investigate the importance of the glucose transporter GLUT-4 for muscle glucose uptake during exercise, transgenic mice with skeletal muscle GLUT-4 expression approximately 30–60% of normal (CON) and approximately 5–10% of normal (KO) were generated using the Cre/Lox system and compared with wild-type (WT) mice during approximately 40 min of treadmill running (KO: 37.7 ± 1.3 min; WT: 40 min; CON: 40 min, P = 0.18). In WT and CON animals, exercise resulted in an overall increase in muscle glucose uptake. More specifically, glucose uptake was increased in red gastrocnemius of WT mice and in the soleus and red gastrocnemius of CON mice. In contrast, the exercise-induced increase in muscle glucose uptake in all muscles was completely abolished in KO mice. Muscle glucose uptake increased during exercise in both red and white quadriceps of WT mice, while the small increases in CON mice were not statistically significant. In KO mice, there was no change at all in quadriceps muscle glucose uptake. No differences in muscle glycogen use during exercise were observed between any of the groups. However, there was a significant increase in plasma glucose levels after exercise in KO mice. The results of this study demonstrated that a reduction in skeletal muscle GLUT-4 expression to approximately 10% of normal levels completely abolished the exercise-induced increase in muscle glucose uptake.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Granulocyte-Colony Stimulating Factor (G-CSF) is a commercially available drug with research linking it to favourable muscle adaptations, post trauma. Molecular techniques were used to identify the G-CSF receptor in skeletal muscle and G-CSF treatment was used to determine the molecular mechanisms by which G-CSF enhances muscle growth and regeneration.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This article is concentrated on the objective computerizing method of measuring of muscle tone using compressive and decompressive deformation of superficial skeletal muscle of wrist in vivo. Four indices were highly recommended for complex analysis of muscle tone.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We determined whole-body insulin sensitivity, long-chain fatty acyl coenzyme A (LCACoA) content, skeletal muscle triglyceride (TGm) concentration, fatty acid transporter protein content, and oxidative enzyme activity in eight patients with type 2 diabetes (TYPE 2); six healthy control subjects matched for age (OLD), body mass index, percentage of body fat, and maximum pulmonary O2 uptake; nine well-trained athletes (TRAINED); and four age-matched controls (YOUNG). Muscle biopsies from the vastus lateralis were taken before and after a 2-h euglycemic-hyperinsulinemic clamp. Oxidative enzyme activities, fatty acid transporters (FAT/CD36 and FABPpm), and TGm were measured from basal muscle samples, and total LCACoA content was determined before and after insulin stimulation. Whole-body insulin-stimulated glucose uptake was lower in TYPE 2 (P < 0.05) than in OLD, YOUNG, and TRAINED. TGm was elevated in TYPE 2 compared with all other groups (P < 0.05). However, both basal and insulin-stimulated skeletal muscle LCACoA content were similar. Basal citrate synthase activity was higher in TRAINED (P < 0.01), whereas β-hydroxyacyl CoA dehydrogenase activity was higher in TRAINED compared with TYPE 2 and OLD. There was a significant relationship between the oxidative capacity of skeletal muscle and insulin sensitivity (citrate synthase, r = 0.71, P < 0.001; β-hydroxyacyl CoA dehydrogenase, r = 0.61, P = 0.001). No differences were found in FAT/CD36 protein content between groups. In contrast, FABPpm protein was lower in OLD compared with TYPE 2 and YOUNG (P < 0.05). In conclusion, despite markedly elevated skeletal muscle TGm in type 2 diabetic patients and strikingly different levels of whole-body glucose disposal, both basal and insulin-stimulated LCACoA content were similar across groups. Furthermore, skeletal muscle oxidative capacity was a better predictor of insulin sensitivity than either TGm concentration or long-chain fatty acyl CoA content.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

 The major findings established a mouse brown adipose tissue (BAT)-enriched miRNA profile conserved in human BAT and predicted to target genes potentially involved in growth and development. The present results also identified a human skeletal muscle-derived CD34+ cell population with the capacity to differentiate into brown adipocytes in vitro. These CD34+ expressed common miRNAs to mouse and human BAT. Finally these findings show an up-regulation of 4 miRNAs in human adult skeletal muscle following cold exposure. These miRNAs were also present in mouse and human BAT as well as in CD34+ brown adipocytes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Physical inactivity, inadequate dietary protein, and low-grade systemic inflammation contribute to age-related muscle loss, impaired function, and disability.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The molecular factors targeted by androgens and estrogens on muscle mass are not fully understood. The current study aimed to explore gene and protein expression of Atrogin-1, MuRF1, and myostatin in an androgen deprivation-induced muscle atrophy model.