942 resultados para Shielded metallic cables
Resumo:
Simple, rapid, catalyst-free synthesis of complex patterns of long, vertically aligned multiwalled carbon nanotubes, strictly confined within mechanically-written features on a Si(1 0 0) surface is reported. It is shown that dense arrays of the nanotubes can nucleate and fully fill the features when the low-temperature microwave plasma is in a direct contact with the surface. This eliminates additional nanofabrication steps and inevitable contact losses in applications associated with carbon nanotube patterns. Using metal catalyst has long been considered essential for the nucleation and growth of surface-supported carbon nanotubes (CNTs) [1] and [2]. Only very recently, the possibility of CNT growth using non-metallic (e.g., oxide [3] and SiC [4]) catalysts or artificially created carbon-enriched surface layers [5] has been demonstrated. However, successful integration of carbon nanostructures into Si-based nanodevice platforms requires catalyst-free growth, as the catalyst nanoparticles introduce contact losses, and their catalytic activity is very difficult to control during the growth [6]. Furthermore, in many applications in microfluidics, biological and molecular filters, electronic, sensor, and energy conversion nanodevices, the CNTs need to be arranged in specific complex patterns [7] and [8]. These patterns need to contain the basic features (e.g., lines and dots) written using simple procedures and fully filled with dense arrays of high-quality, straight, yet separated nanotubes. In this paper, we report on a completely metal or oxide catalyst-free plasma-based approach for the direct and rapid growth of dense arrays of long vertically-aligned multi-walled carbon nanotubes arranged into complex patterns made of various combinations of basic features on a Si(1 0 0) surface written using simple mechanical techniques. The process was conducted in a plasma environment [9] and [10] produced by a microwave discharge which typically generates the low-temperature plasmas at the discharge power below 1 kW [11]. Our process starts from mechanical writing (scribing) a pattern of arbitrary features on pre-treated Si(1 0 0) wafers. Before and after the mechanical feature writing, the Si(1 0 0) substrates were cleaned in an aqueous solution of hydrofluoric acid for 2 min to remove any possible contaminations (such as oil traces which could decompose to free carbon at elevated temperatures) from the substrate surface. A piece of another silicon wafer cleaned in the same way as the substrate, or a diamond scriber were used to produce the growth patterns by a simple arbitrary mechanical writing, i.e., by making linear scratches or dot punctures on the Si wafer surface. The results were the same in both cases, i.e., when scratching the surface by Si or a diamond scriber. The procedure for preparation of the substrates did not involve any possibility of external metallic contaminations on the substrate surface. After the preparation, the substrates were loaded into an ASTeX model 5200 chemical vapour deposition (CVD) reactor, which was very carefully conditioned to remove any residue contamination. The samples were heated to at least 800 °C to remove any oxide that could have formed during the sample loading [12]. After loading the substrates into the reactor chamber, N2 gas was supplied into the chamber at the pressure of 7 Torr to ignite and sustain the discharge at the total power of 200 W. Then, a mixture of CH4 and 60% of N2 gases were supplied at 20 Torr, and the discharge power was increased to 700 W (power density of approximately 1.49 W/cm3). During the process, the microwave plasma was in a direct contact with the substrate. During the plasma exposure, no external heating source was used, and the substrate temperature (∼850 °C) was maintained merely due to the plasma heating. The features were exposed to a microwave plasma for 3–5 min. A photograph of the reactor and the plasma discharge is shown in Fig. 1a and b.
Resumo:
We report the catalyst-free synthesis of the arrays of core–shell, ultrathin, size-uniform SiC/AlSiC nanowires on the top of a periodic anodic aluminum oxide template. The nanowires were grown using an environmentally friendly, silane-free process by exposing the silicon supported porous alumina template to CH4 + H2 plasmas. High-resolution scanning and transmission electron microscopy studies revealed that the nanowires have a single-crystalline core with a diameter of about 10 nm and a thin (1–2 nm) amorphous AlSiC shell. Because of their remarkable length, high aspect ratio, and very high surface area-to-volume ratio, these unique structures are promising for nanoelectronic and nanophotonic applications that require efficient electron emission, light scattering, etc. A mechanism for nanowire growth is proposed based upon the reduction of the alumina template to nanosized metallic aluminum droplets forming between nanopores. The subsequent incorporation of silicon and carbon atoms from the plasma leads to nucleation and growth from the top of the alumina template.
Resumo:
Using a multiple plasma deposition-annealing (MDA) technique, we have fabricated an Au nanoisland-based thin film nanoresistor with a very low temperature coefficient of electrical resistivity in a cryogenic-to-room temperature range of 10 to 300 K. The nanoislanded gold film was deposited on a SiO2/Si wafer (500 nm SiO2 thickness) between two 300 nm thick Au electrodes which were separated by 100 m. A sophisticated selection of the thickness of the nanoislanded gold film, the annealing temperature, as well as the number of deposition/annealing cycles resulted in the fabrication of a nanoresistor with a temperature coefficient of electrical resistivity of 2.1 × 10-3 K-1 and the resistivity deviation not exceeding 2% in a cryogenic-to-room temperature range. We have found that the constant resistivity regime of the nanoisland-based thin film nanoresistor corresponds to a minimized nanoisland activation energy (approximately 0.3 meV). This energy can be minimized by reducing the nearest neighbor distance and increasing the size of the Au nanoislands in the optimized nanoresistor structure. It is shown that the constant resistivity nanoresistor operates in the regime where the thermally activated electron tunneling is compensated by the negative temperature dependence of the metallic-type conductivity of nanoislands. Our results are relevant to the development of commercially viable methods of nanoresistor production for various nanoelectronics-based devices. The proposed MDA technique also provides the opportunity to fabricate large arrays of metallic nanoparticles with controllable size, shapes and inter-nanoparticle gaps.
Resumo:
Nonlinear effects associated with density modulation caused by wave-induced ionization in magnetized plasmas were studied. The ionizing surface waves propagate at the interface between the plasma and a metallic surface. It is shown that the ionization nonlinearity can be important for typical experimental conditions.
Resumo:
Recent research in the rapidly emerging field of plasmonics has shown the potential to significantly enhance light trapping inside thin-film solar cells by using metallic nanoparticles. In this article it is demonstrated the plasmon enhancement of optical absorption in amorphous silicon solar cells by using silver nanoparticles. Based on the analysis of the higher-order surface plasmon modes, it is shown how spectral positions of the surface plasmons affect the plasmonic enhancement of thin-film solar cells. By using the predictive 3D modeling, we investigate the effect of the higher-order modes on that enhancement. Finally, we suggest how to maximize the light trapping and optical absorption in the thin-film cell by optimizing the nanoparticle array parameters, which in turn can be used to fine tune the corresponding surface plasmon modes.
Resumo:
Strong electromagnetic field enhancement that occurs under conditions of the surface plasmon excitation in metallic nanoparticles deposited on a semiconductor surface is a very efficient and promising tool for increasing the optical absorption within semiconductor solar cells and, hence, their photocurrent response. The enhancement of the optical absorption in thin-film silicon solar cells via the excitation of localized surface plasmons in spherical silver nanoparticles is investigated. Using the effective medium model, the effect of the nanoparticle size and the surface coverage on that enhancement is analyzed. The optimum configuration and the nanoparticle parameters leading to the maximum enhancement in the optical absorption and the photocurrent response in a single p-n junction silicon cell are obtained. The effect of coupling between the silicon layer and the surface plasmon fields on the efficiency of the above enhancement is quantified as well.
Resumo:
The equilibrium profiles of the plasma parameters of large-area if discharges in a finite-length metal-shielded dielectric cylinder are computed using a two-dimensional fluid code. The rf power is coupled to the plasma through edge-localized surface waves traveling in the azimuthal direction along the plasma edge. It is shown that self-consistent accounting for axial plasma diffusion and radial nonuniformity of the electron temperature can explain the frequently reported deviations of experimentally measured radial density profiles from that of the conventional linear diffusion models. The simulation results are in a good agreement with existing experimental data obtained from surface-wave sustained large-diameter plasmas. © 2002 The American Physical Society.
Resumo:
The effects of an inductively rotating current were observed on low-frequency inductively coupled plasmas. The spatial distribution of electromagnetic fields was investigated in a cylindrical metallic chamber filled with dense plasma. The distribution of the magnetic field in plasma chamber was observed for rarefied and dense plasmas. The plasma was assumed as uniform in the electromagnetic fields. The results showed the plasma density increased with power and the electron density increased with pressure.
Resumo:
The catalytic activities, to the reduction of SO2 by CO, of clusters PtlAum (l + m = 2) with or without preadsorbing CO molecules are investigated using first-principles density functional theory. We find that the PtAu(CO)n (n = 1–3) clusters show more excellent catalytic properties than either pure metallic catalysts. Preadsorption of CO to the catalysts could effectively avoid platinum-based catalyst sulfur poisoning; as more CO molecules preadsorbed to the catalysts, the energy barriers for the carbonyl sulfide (COS) molecule’s desorption from the catalyst are remarkably decreased. We propose an ideal catalytic cycle to simultaneously get rid of SO2 and CO over the catalysts PtAu(CO)3.
Resumo:
The surface enhanced Raman scattering effect has shown immense potential for detecting trace amounts of explosive vapor molecules. To date, efforts to produce a commercially available, reliable SERS sensor have been impeded by an inability to separate the electromagnetic enhancement produced by the metallic nanostructure from other signal enhancing effects. Here, we show a new Raman sensor that uses surface acoustic waves (SAWs) to produce controllable surface structures on gold films deposited on LiNbO3 substrates that modulate the Raman signal of a target compound (thiophenol) adsorbed on the films. We demonstrate that this sensor can dynamically control the Raman signal simply by changing the SAW’s amplitude, allowing the Raman signal enhancement factor to be directly measured with no variation in the concentration of the target compound. The physically adsorbed molecules can be removed from the sensor without physical cleaning or damage, making it possible to reuse it for real-time Raman detection.
Resumo:
As printed and flexible plastic electronic gadgets become increasingly viable today, there is a need to develop materials that suit the fabrication processes involved. Two desirable requirements are solution-processable active materials or precursors and low-temperature processability. In this article, we describe a straightforward method of depositing ZnO films by simple spin coating of an organometallic diethylzinc precursor solution and annealing the resulting film at low temperatures (≤200 °C) without involving any synthetic steps. By controlling the humidity in which annealing is conducted, we are able to adjust the intrinsic doping level and carrier concentration in diethylzinc-derived ZnO. Doped or conducting transport layers are greatly preferable to undoped layers as they enable low-resistance contacts and minimize the potential drops. This ability to controllably realize doped ZnO is a key feature of the fabrication process that we describe in this article. We employ field-effect measurements as a diagnostic tool to measure doping levels and mobilities in ZnO and demonstrate that doped ZnO with high charge carrier concentration is ideal for solar cell applications. Respectable power conversion efficiencies (up to 4.5%) are achieved in inverted solar cells that incorporate diethylzinc-derived ZnO films as the electron transport layer and organic blends as the active material. Extensions of this approach to grow ternary and quaternary films with organometallic precursor chemicals will enable solution based growth of a number of semiconductor films as well as a method to dope them.
Resumo:
This study analyzed the relationship between the CO2 emissions of different industries and economic growth in OECD countries from 1970 to 2005. We tested an environmental Kuznets curve (EKC) hypothesis and found that total CO2 emissions from nine industries show an N-shaped trend instead of an inverted U or monotonic increasing trend with increasing income. The EKC hypothesis for sector-level CO2 emissions was supported in the (1) paper, pulp, and printing industry; (2) wood and wood products industry; and (3) construction industry. We also found that emissions from coal and oil increase with economic growth in the steel and construction industries. In addition, the non-metallic minerals, machinery, and transport equipment industries tend to have increased emissions from oil and electricity with economic growth. Finally, the EKC turning point and the relationship between GDP per capita and sectoral CO2 emissions differ among industries according to the fuel type used. Therefore, environmental policies for CO2 reduction must consider these differences in industrial characteristics. © 2013 Elsevier Ltd.
Resumo:
The transfer of chemical vapor deposited graphene is a crucial process, which can affect the quality of the transferred films and compromise their application in devices. Finding a robust and intrinsically clean material capable of easing the transfer of graphene without interfering with its properties remains a challenge. We here propose the use of an organic compound, cyclododecane, as a transfer material. This material can be easily spin coated on graphene and assist the transfer, leaving no residues and requiring no further removal processes. The effectiveness of this transfer method for few-layer graphene on a large area was evaluated and confirmed by microscopy, Raman spectroscopy, x-ray photoemission spectroscopy, and four-point probe measurements. Schottky-barrier solar cells with few-layer graphene were fabricated on silicon wafers by using the cyclododecane transfer method and outperformed reference cells made by standard methods.
Resumo:
Strengthening of metallic structures using carbon fibre reinforced polymer (CFRP) has become a smart strengthening option over the conventional strengthening method. Transverse impact loading due to accidental vehicular collision can lead to the failure of existing steel hollow tubular columns. However, knowledge is very limited on the behaviour of CFRP strengthened steel members under dynamic impact loading condition. This paper deals with the numerical simulation of CFRP strengthened square hollow section (SHS) steel columns under transverse impact loading to predict the behaviour and failure modes. The transverse impact loading is simulated using finite element (FE) analysis based on numerical approach. The accuracy of the FE modelling is ensured by comparing the predicted results with available experimental tests. The effects of impact velocity, impact mass, support condition, axial loading and CFRP thickness are examined through detail parametric study. The impact simulation results indicate that the strengthening technique shows an improved impact resistance capacity by reducing lateral displacement of the strengthened column about 58% compared to the bare steel column. Axial loading plays an important role on the failure behaviour of tubular column.
Resumo:
Carbon fibre reinforced polymer (CFRP) strengthening of metallic structures under static loading has shown great potential in the recent years. However, steel structures are often experienced natural (e.g. earthquake, wind) as well as man-made (e.g. vehicular impact, blast) dynamic loading. Therefore, there is a growing interest among the researchers to investigate the capability of CFRP strengthened members under such dynamic conditions. This study focuses on the finite element (FE) numerical modelling and simulation of CFRP strengthened steel column under transverse impact loading to predict the behaviour and failure modes. Impact simulation process and the CFRP strengthened steel column are validated with the existing experimental results in literature. The validated FE model of CFRP strengthened steel column is then further used to investigate the effects of transverse impact loading on its structural performance. The results are presented in terms of transvers e impact force, lateral and axial displacement, and deformed shape to evaluate the effectiveness of CFRP strengthening technique. Comparisons between the bare steel and CFRP strengthened steel columns clearly indicate the performance enhancement of strengthened column under transverse impact loading.