938 resultados para Sensors and interfaces
Resumo:
Solution-processed polymer films are used in multiple technological applications. The presence of residual solvent in the film, as a consequence of the preparation method, affects the material properties, so films are typically subjected to post-deposition thermal annealing treatments aiming at its elimination. Monitoring the amount of solvent eliminated as a function of the annealing parameters is important to design a proper treatment to ensure complete solvent elimination, crucial to obtain reproducible and stable material properties and therefore, device performance. Here we demonstrate, for the first time to our knowledge, the use of an organic distributed feedback (DFB) laser to monitor with high precision the amount of solvent extracted from a spin-coated polymer film as a function of the thermal annealing time. The polymer film of interest, polystyrene in the present work, is doped with a small amount of a laser dye as to constitute the active layer of the laser device and deposited over a reusable DFB resonator. It is shown that solvent elimination translates into shifts in the DFB laser wavelength, as a consequence of changes in film thickness and refractive index. The proposed method is expected to be applicable to other types of annealing treatments, polymer-solvent combinations or film deposition methods, thus constituting a valuable tool to accurately control the quality and reproducibility of solution-processed polymer thin films.
Resumo:
Liver-on-chip systems are widely seen as having the potential to replace animal testing for long-term liver toxicity assessments. However, such systems necessitate solutions, such as electrochemical microsensors, to provide information about the cells exposed to chemical compounds in a confined space. This study describes the development of microsensors for the detection of alanine-aminotransferase (ALT), an intracellular enzyme found in hepatocytes, for monitoring the viability of in-vitro hepatic cell cultures. The electrochemical sensors were developed by using screen printed electrodes functionalized by drop-casting. These technologies are intended to produce disposable and low-cost sensors that can easily be exchanged once their performance is degraded. The sensors are capable of measuring ALT in a microfluidic environment through the detection of changes in glutamate concentration. The microsensors were found to be stable for more than 60 days and were successfully tested using hepatocellular lysates to assess their capability to quantify ALT activity in a hepatic cell culture. These results open the way to their integration in liver bioreactors to assess hepatocellular toxicity in-vitro.
Resumo:
O objetivo desta tese é compreender, a partir das categorias trabalho e consumo, como se constituem as relações das redes de colaboração da empresa de tendências de consumo Trendwatching. No âmbito acadêmico, literatura recente revela o aparecimento de novos conceitos, como prosumer, co-criação e públicos produtivos para explicar as transformações no mundo do trabalho que envolvem cada vez mais a participação do consumidor para que o valor se realize. Dessa forma, os fundamentos teóricos que embasam esta tese providenciam elementos sobre os conceitos de valor, trabalho imaterial, consumo e suas interrelações. A coleta de dados ocorreu, em sua maior parte, na matriz da empresa em Londres durante o ano de 2015, sendo composta por: (1) realização de 31 entrevistas semi-estruturadas com spotters, funcionários e clientes da empresa; (2) observação em campo durante 3 meses, período este registrado em um diário de campo; (3) dados obtidos por meios virtuais, através do site da Trendwatching. Os dados foram analisados por meio da Análise de Conteúdo, onde, a partir de um processo de derivação, foram encontradas 49 categorias iniciais, 10 intermediárias e 3 finais. Por meio de um processo de derivação, chegou-se em 10 categorias intermediárias: (1) quem é o spotter; (2) busca de informações pelo spotter; (3) motivação e recompensa dos spotters; (4) spotters e a comunidade TW:IN; (5) formação dos spotters; (6) imagem da Trendwatching; (7) Ambiente de trabalho; (8) O que a Trendwatching vende; (9) base de dados; (10) tendências. Com estas categorias intermediárias em mãos, realizou-se novamente um processo de derivação para chegar nas categorias finais, que são: (1) spotters; (2) trabalho; (3) informação. Os resultados da pesquisa permitem mostrar que o spotter – assim chamado o indivíduo que compõe a rede a colaboração da Trendwatching – é o principal produto/serviço vendido pela empresa. A partir das categorias finais, retorna-se à pergunta de pesquisa, de modo a providenciar contribuições da tese para o campo, que são: (a) ampliar a discussão sobre criação de valor em Estudos Organizacionais, identificando diferentes conceitos e novas formas de apropriação do valor pelo capital implicados nas interações e interfaces entre trabalho e consumo; (b) demonstrar como a operacionalização da Análise de Conteúdo pode auxiliar na organização de dados empíricos virtuais (análise do site); (c) estimular que Estudos de Caso sejam, com mais frequência, realizados em organizações cujo trabalho seja imaterial por excelência.
Resumo:
Context-aware applications rely on implicit forms of input, such as sensor-derived data, in order to reduce the need for explicit input from users. They are especially relevant for mobile and pervasive computing environments, in which user attention is at a premium. To support the development of context-aware applications, techniques for modelling context information are required. These must address a unique combination of requirements, including the ability to model information supplied by both sensors and people, to represent imperfect information, and to capture context histories. As the field of context-aware computing is relatively new, mature solutions for context modelling do not exist, and researchers rely on information modelling solutions developed for other purposes. In our research, we have been using a variant of Object-Role Modeling (ORM) to model context. In this paper, we reflect on our experiences and outline some research challenges in this area.
Resumo:
Location information is commonly used in context-aware applications and pervasive systems. These applications and systems may require knowledge, of the location of users, devices and services. This paper presents a location management system able to gather, process and manage location information from a variety of physical and virtual location sensors. The system scales to the complexity of context-aware applications, to a variety of types and large number of location sensors and clients, and to geographical size of the system. The proposed location management system provides conflict resolution of location information and mechanisms to ensure privacy.
Resumo:
This thesis deals with the challenging problem of designing systems able to perceive objects in underwater environments. In the last few decades research activities in robotics have advanced the state of art regarding intervention capabilities of autonomous systems. State of art in fields such as localization and navigation, real time perception and cognition, safe action and manipulation capabilities, applied to ground environments (both indoor and outdoor) has now reached such a readiness level that it allows high level autonomous operations. On the opposite side, the underwater environment remains a very difficult one for autonomous robots. Water influences the mechanical and electrical design of systems, interferes with sensors by limiting their capabilities, heavily impacts on data transmissions, and generally requires systems with low power consumption in order to enable reasonable mission duration. Interest in underwater applications is driven by needs of exploring and intervening in environments in which human capabilities are very limited. Nowadays, most underwater field operations are carried out by manned or remotely operated vehicles, deployed for explorations and limited intervention missions. Manned vehicles, directly on-board controlled, expose human operators to risks related to the stay in field of the mission, within a hostile environment. Remotely Operated Vehicles (ROV) currently represent the most advanced technology for underwater intervention services available on the market. These vehicles can be remotely operated for long time but they need support from an oceanographic vessel with multiple teams of highly specialized pilots. Vehicles equipped with multiple state-of-art sensors and capable to autonomously plan missions have been deployed in the last ten years and exploited as observers for underwater fauna, seabed, ship wrecks, and so on. On the other hand, underwater operations like object recovery and equipment maintenance are still challenging tasks to be conducted without human supervision since they require object perception and localization with much higher accuracy and robustness, to a degree seldom available in Autonomous Underwater Vehicles (AUV). This thesis reports the study, from design to deployment and evaluation, of a general purpose and configurable platform dedicated to stereo-vision perception in underwater environments. Several aspects related to the peculiar environment characteristics have been taken into account during all stages of system design and evaluation: depth of operation and light conditions, together with water turbidity and external weather, heavily impact on perception capabilities. The vision platform proposed in this work is a modular system comprising off-the-shelf components for both the imaging sensors and the computational unit, linked by a high performance ethernet network bus. The adopted design philosophy aims at achieving high flexibility in terms of feasible perception applications, that should not be as limited as in case of a special-purpose and dedicated hardware. Flexibility is required by the variability of underwater environments, with water conditions ranging from clear to turbid, light backscattering varying with daylight and depth, strong color distortion, and other environmental factors. Furthermore, the proposed modular design ensures an easier maintenance and update of the system over time. Performance of the proposed system, in terms of perception capabilities, has been evaluated in several underwater contexts taking advantage of the opportunity offered by the MARIS national project. Design issues like energy power consumption, heat dissipation and network capabilities have been evaluated in different scenarios. Finally, real-world experiments, conducted in multiple and variable underwater contexts, including open sea waters, have led to the collection of several datasets that have been publicly released to the scientific community. The vision system has been integrated in a state of the art AUV equipped with a robotic arm and gripper, and has been exploited in the robot control loop to successfully perform underwater grasping operations.
Resumo:
O tema desta pesquisa, Complexidade, Espiritualidade e Educação: por uma educabilidade do espírito humano, sugere que a problemática do conhecimento sobre o espírito e a espiritualidade humanos está enraizada não apenas nos redutos religiosos, mas também no próprio interstício da ciência e também no coração da sociedade moderna. Apostamos neste tema não apenas pela sua atualidade, mas porque vem assumindo nestes últimos anos o status de indispensável no conjunto dos saberes, das realizações e do ethos humanos. Mas, para nos infiltrarmos neste assunto, é preciso uma nova lente epistemológica capaz de fazer uma leitura crítica, complexa e multidimensional a respeito da espiritualidade humana. A gênese do problema levantada para esta pesquisa parte do conflito entre as várias percepções sobre a condição humana, que ocorre a partir mesmo da crise experimentada hoje por muitos matizes científicos. A aproximação entre a teoria da complexidade, a espiritualidade humana com a educação, nos permite criar um cenário enriquecedor que acrescenta qualidade aos discursos e práticas educacionais na escola, na família, nas pastorais, na educação religiosa e ainda, em outras atividades afins. A nossa pergunta nuclear e que servirá de norte para o esforço desta pesquisa, é a seguinte: o espírito humano existe e, se existe, é educável? Para um melhor aproveitamento e compreensão desta dissertação, a pesquisa foi dividida em três capítulos, sistematizados da seguinte forma: No primeiro capítulo fizemos a exposição de algumas dificuldades de infiltração na temática sobre o espírito e da espiritualidade humanos. Essa exposição foi feita em dois momentos: o primeiro discute alguns pressupostos conceituais e semânticos sobre o espírito humano e, em seguida, aponta a necessidade de superar o conhecimento fragmentado em favor da recomposição do cariz humano. No segundo momento, discorremos sobre a rasoura científica que tem deixado de lado algumas dimensões humanas, sob pesado ônus para a existência humana como um todo. No segundo capítulo discutimos a atualidade do tema, que também pode ser visto em duas partes: na primeira dialogamos com algumas teorias sobre a complexidade e a multidimensionalidade da condição humana. Em seguida, focamos a partir dos novos humores antropológicos a dimensão simbólica e espiritual do humano. Na segunda parte, pontuamos sobre o desencantamento e crise da sociedade prometéica e a emergência e interfaces dos assuntos sobre a espiritualidade humana nestas últimas décadas. No terceiro e último capítulo, discorremos sobre as funções do espírito e as possibilidades reais de uma educação para o espírito humano. Semelhantemente, dividimos o capítulo em dois momentos de discussão: no primeiro, fazemos uma abordagem sobre a dimensão do espírito e a expressão da consciência como função de sentido. No segundo e último momento, levantamos a questão da educação do espírito humano. Seguindo este raciocínio, propomos uma pedagogia voltada também para o espírito humano. Deixamos por fim algumas sugestões que sinalizam uma educação para a ecologia do humano.
Resumo:
Automatically generating maps of a measured variable of interest can be problematic. In this work we focus on the monitoring network context where observations are collected and reported by a network of sensors, and are then transformed into interpolated maps for use in decision making. Using traditional geostatistical methods, estimating the covariance structure of data collected in an emergency situation can be difficult. Variogram determination, whether by method-of-moment estimators or by maximum likelihood, is very sensitive to extreme values. Even when a monitoring network is in a routine mode of operation, sensors can sporadically malfunction and report extreme values. If this extreme data destabilises the model, causing the covariance structure of the observed data to be incorrectly estimated, the generated maps will be of little value, and the uncertainty estimates in particular will be misleading. Marchant and Lark [2007] propose a REML estimator for the covariance, which is shown to work on small data sets with a manual selection of the damping parameter in the robust likelihood. We show how this can be extended to allow treatment of large data sets together with an automated approach to all parameter estimation. The projected process kriging framework of Ingram et al. [2007] is extended to allow the use of robust likelihood functions, including the two component Gaussian and the Huber function. We show how our algorithm is further refined to reduce the computational complexity while at the same time minimising any loss of information. To show the benefits of this method, we use data collected from radiation monitoring networks across Europe. We compare our results to those obtained from traditional kriging methodologies and include comparisons with Box-Cox transformations of the data. We discuss the issue of whether to treat or ignore extreme values, making the distinction between the robust methods which ignore outliers and transformation methods which treat them as part of the (transformed) process. Using a case study, based on an extreme radiological events over a large area, we show how radiation data collected from monitoring networks can be analysed automatically and then used to generate reliable maps to inform decision making. We show the limitations of the methods and discuss potential extensions to remedy these.
Resumo:
A novel quasidistributed in-fiber Bragg grating (FBG) temperature sensor system has been developed for temperature proving in vivo in the human body for medical applications, e.g., hyperthermia treatment. This paper provides the operating principle of FBG temperature sensors and then the design of the sensor head. High-resolution detection of the wavelength-shifts induced by temperature changes are achieved using drift-compensated interferometric detection while the return signals from the FBG sensor array are demultiplexed with a simple monochromator which offers crosstalk-free wavelength-division-multiplexing (WDM). A “strain-free” probe is designed by enclosing the FBG sensor array in a protection sleeve. A four FBG sensor system is demonstrated and the experimental results are in good agreement with those obtained by traditional electrical thermocouple sensors. A resolution of 0.1°C and an accuracy of ±0.2°C over a temperature range of 30-60°C have been achieved, which meet established medical requirements.
Resumo:
Distributed digital control systems provide alternatives to conventional, centralised digital control systems. Typically, a modern distributed control system will comprise a multi-processor or network of processors, a communications network, an associated set of sensors and actuators, and the systems and applications software. This thesis addresses the problem of how to design robust decentralised control systems, such as those used to control event-driven, real-time processes in time-critical environments. Emphasis is placed on studying the dynamical behaviour of a system and identifying ways of partitioning the system so that it may be controlled in a distributed manner. A structural partitioning technique is adopted which makes use of natural physical sub-processes in the system, which are then mapped into the software processes to control the system. However, communications are required between the processes because of the disjoint nature of the distributed (i.e. partitioned) state of the physical system. The structural partitioning technique, and recent developments in the theory of potential controllability and observability of a system, are the basis for the design of controllers. In particular, the method is used to derive a decentralised estimate of the state vector for a continuous-time system. The work is also extended to derive a distributed estimate for a discrete-time system. Emphasis is also given to the role of communications in the distributed control of processes and to the partitioning technique necessary to design distributed and decentralised systems with resilient structures. A method is presented for the systematic identification of necessary communications for distributed control. It is also shwon that the structural partitions can be used directly in the design of software fault tolerant concurrent controllers. In particular, the structural partition can be used to identify the boundary of the conversation which can be used to protect a specific part of the system. In addition, for certain classes of system, the partitions can be used to identify processes which may be dynamically reconfigured in the event of a fault. These methods should be of use in the design of robust distributed systems.
Resumo:
In this paper I describe research activities in the field of optical fiber sensing undertaken by me after leaving the Applied Optics Group at the University of Kent. The main topics covered are long period gratings, neural network based signal processing, plasmonic sensors, and polymer fiber gratings. I also give a summary of my two periods of research at the University of Kent, covering 1985–1988 and 1991–2001.
Resumo:
This thesis documents the design, implementation and testing of a smart sensing platform that is able to discriminate between differences or small changes in a persons walking. The distributive tactile sensing method is used to monitor the deflection of the platform surface using just a small number of sensors and, through the use of neural networks, infer the characteristics of the object in contact with the surface. The thesis first describes the development of a mathematical model which uses a novel method to track the position of a moving load as it passes over the smart sensing surface. Experimental methods are then described for using the platform to track the position of swinging pendulum in three dimensions. It is demonstrated that the method can be extended to that of real-time measurement of balance and sway of a person during quiet standing. Current classification methods are then investigated for use in the classification of different gait patterns, in particular to identify individuals by their unique gait pattern. Based on these observations, a novel algorithm is developed that is able to discriminate between abnormal and affected gait. This algorithm, using the distributive tactile sensing method, was found to have greater accuracy than other methods investigated and was designed to be able to cope with any type of gait variation. The system developed in this thesis has applications in the area of medical diagnostics, either as an initial screening tool for detecting walking disorders or to be able to automatically detect changes in gait over time. The system could also be used as a discrete biometric identification method, for example identifying office workers as they pass over the surface.
Resumo:
An array of in-line curvature sensors on a garment is used to monitor the thoracic and abdominal movements of a human during respiration. The results are used to obtain volumetric changes of the human torso in agreement with a spirometer used simultaneously at the mouth. The array of 40 in-line fiber Bragg gratings is used to produce 20 curvature sensors at different locations, each sensor consisting of two fiber Bragg gratings. The 20 curvature sensors and adjoining fiber are encapsulated into a low-temperature-cured synthetic silicone. The sensors are wavelength interrogated by a commercially available system from Moog Insensys, and the wavelength changes are calibrated to recover curvature. A three-dimensional algorithm is used to generate shape changes during respiration that allow the measurement of absolute volume changes at various sections of the torso. It is shown that the sensing scheme yields a volumetric error of 6%. Comparing the volume data obtained from the spirometer with the volume estimated with the synchronous data from the shape-sensing array yielded a correlation value 0.86 with a Pearson's correlation coefficient p <0.01.
Resumo:
The main objective of the project is to enhance the already effective health-monitoring system (HUMS) for helicopters by analysing structural vibrations to recognise different flight conditions directly from sensor information. The goal of this paper is to develop a new method to select those sensors and frequency bands that are best for detecting changes in flight conditions. We projected frequency information to a 2-dimensional space in order to visualise flight-condition transitions using the Generative Topographic Mapping (GTM) and a variant which supports simultaneous feature selection. We created an objective measure of the separation between different flight conditions in the visualisation space by calculating the Kullback-Leibler (KL) divergence between Gaussian mixture models (GMMs) fitted to each class: the higher the KL-divergence, the better the interclass separation. To find the optimal combination of sensors, they were considered in pairs, triples and groups of four sensors. The sensor triples provided the best result in terms of KL-divergence. We also found that the use of a variational training algorithm for the GMMs gave more reliable results.