999 resultados para Searching Behavior
Resumo:
An extensive literature suggests a link between executive functions and aggressive behavior in humans, pointing mostly to an inverse relationship, i.e., increased tendencies toward aggression in individuals scoring low on executive function tests. This literature is limited, though, in terms of the groups studied and the measures of executive functions. In this paper, we present data from two studies addressing these issues. In a first behavioral study, we asked whether high trait aggressiveness is related to reduced executive functions. A sample of over 600 students performed in an extensive behavioral test battery including paradigms addressing executive functions such as the Eriksen Flanker task, Stroop task, n-back task, and Tower of London (TOL). High trait aggressive participants were found to have a significantly reduced latency score in the TOL, indicating more impulsive behavior compared to low trait aggressive participants. No other differences were detected. In an EEG-study, we assessed neural and behavioral correlates of error monitoring and response inhibition in participants who were characterized based on their laboratory-induced aggressive behavior in a competitive reaction time task. Participants who retaliated more in the aggression paradigm and had reduced frontal activity when being provoked did not, however, show any reduction in behavioral or neural correlates of executive control compared to the less aggressive participants. Our results question a strong relationship between aggression and executive functions at least for healthy, high-functioning people.
Resumo:
This study is focused on the dominance exerted by the invasive Argentine ant over native ants in a coastal Mediterranean area. Theimpact of this invasive ant on native ant assemblages and its consequences on total ant biomass and on the intensity of habitat explorationwere evaluated. Foraging ants were observed and their trajectories recorded during 5-minute periods in two study zones, one invaded andthe other non-invaded. Ant species detected, ant worker abundance, ant biomass and the intensity of soil surface searching done by antswere compared between the two zones. The Argentine ant invasion provoked a drastic reduction of the ant species richness. Apparentlyonly one native ant species is able to coexist with the Argentine ant, the cryptic Plagiolepis pygmaea. Ant worker abundance was also modified after the invasion: the number of Argentine ant workers detected, which represented 92% of the invaded zone, was two times higher than the number of native ant workers detected in the non-invaded zone. The total ant biomass was inversely affected, becoming four times lower in the invaded zone highly dominated by Linepithema humile. The higher number of Argentine ant workers and their fast tempo of activity implied an alteration of the intensity of soil surface searching: scanning by the Argentine ants in the invaded zone was higher than that done by the native ants in the non-invaded zone, and the estimated time for a complete soil surface scan was 64 minutes in the invaded zone and 108 minutes in the non-invaded zone. Consequently, resources will be discovered faster by ants in the invaded zone than in the non-invaded zone. The increase of the mean temperature and the decrease of the relative humidity from May to August reduced the ant activity in the two study zones but this reduction was greater in the invaded zone
Resumo:
The nonequilibrium phase transitions occurring in a fast-ionic-conductor model and in a reaction-diffusion Ising model are studied by Monte Carlo finite-size scaling to reveal nonclassical critical behavior; our results are compared with those in related models.
Resumo:
The properties of water can have a strong dependence on the confinement. Here, we consider a water monolayer nanoconfined between hydrophobic parallel walls under conditions that prevent its crystallization. We investigate, by simulations of a many-body coarse-grained water model, how the properties of the liquid are affected by the confinement. We show, by studying the response functions and the correlation length and by performing finite-size scaling of the appropriate order parameter, that at low temperature the monolayer undergoes a liquid-liquid phase transition ending in a critical point in the universality class of the two-dimensional (2D) Ising model. Surprisingly, by reducing the linear size L of the walls, keeping the walls separation h constant, we find a 2D-3D crossover for the universality class of the liquid-liquid critical point for L/h=~50, i.e. for a monolayer thickness that is small compared to its extension. This result is drastically different from what is reported for simple liquids, where the crossover occurs for , and is consistent with experimental results and atomistic simulations. We shed light on these findings showing that they are a consequence of the strong cooperativity and the low coordination number of the hydrogen bond network that characterizes water.
Resumo:
We show how certain N-dimensional dynamical systems are able to exploit the full instability capabilities of their fixed points to do Hopf bifurcations and how such a behavior produces complex time evolutions based on the nonlinear combination of the oscillation modes that emerged from these bifurcations. For really different oscillation frequencies, the evolutions describe robust wave form structures, usually periodic, in which selfsimilarity with respect to both the time scale and system dimension is clearly appreciated. For closer frequencies, the evolution signals usually appear irregular but are still based on the repetition of complex wave form structures. The study is developed by considering vector fields with a scalar-valued nonlinear function of a single variable that is a linear combination of the N dynamical variables. In this case, the linear stability analysis can be used to design N-dimensional systems in which the fixed points of a saddle-node pair experience up to N21 Hopf bifurcations with preselected oscillation frequencies. The secondary processes occurring in the phase region where the variety of limit cycles appear may be rather complex and difficult to characterize, but they produce the nonlinear mixing of oscillation modes with relatively generic features
Resumo:
The known properties of diffusion on fractals are reviewed in order to give a general outlook of these dynamic processes. After that, we propose a description developed in the context of the intrinsic metric of fractals, which leads us to a differential equation able to describe diffusion in real fractals in the asymptotic regime. We show that our approach has a stronger physical justification than previous works on this field. The most important result we present is the introduction of a dependence on time and space for the conductivity in fractals, which is deduced by scaling arguments and supported by computer simulations. Finally, the diffusion equation is used to introduce the possibility of reaction-diffusion processes on fractals and analyze their properties. Specifically, an analytic expression for the speed of the corresponding travelling fronts, which can be of great interest for application purposes, is derived
Resumo:
This study investigates the over and underreaction effects in nine emerging stock markets of Europe. Especially, the possible behavioral aspects behind them are an area of interest. These aspects would link them strongly to behavioral finance. Second, our aim is to provide more evidence of the similar or dissimilar behavior in general among these countries. Third, the possibility to gain abnormal returns from these markets is also under investigation. Data from nine emerging stock market indexes in Europe is gathered from January 1, 1998 to January 1, 2008 to find answers to the stated questions. Studies for the over and underreaction effects are done using a variant of the event study methodology which in this case includes two different calculation methods for the expected returns. Studies are performed using 60 day time intervals. The results between the two different methods used are relatively similar concerning the over and underreaction effects. Another of the methods, however, suggests there to be behavioral aspects behind the effects interpreted. On the other hand, the another method does not support this suggestion. However, a conclusion can be made that the factors driving these countries' behavior are related to their geographical location and to the fact that they are emerging countries.
Resumo:
Electrochemical behavior of pesticides is extensively studied, but little attention has been given to the study of their degradation products (by-products) by electrochemical methods. However, the degradation products of pesticides can be even more toxic then the parent products and such studies should be encouraged. Therefore, the objective of this work was to evaluate the electroactivity of by-products of imazaquin, methylparathion, bentazon and atrazine, generated by UV irradiation and measured using cyclic and differential pulse voltammetry and UV-visible absorption spectrophotometry. Results have shown that several by-products exhibit electroactivity, allowing, in some cases, the simultaneous determination of both parent and degradation products.
Resumo:
Cellular metals are a new class of materials with promising applications and a unique combination of physical, chemical and mechanical properties. The Al-356 alloy is used to manufacture metal foams from NaCl preforms. Despite the usefulness of these materials, their performance may be affected by corrosion due to residual salt. This paper reports the study of the behavior of the Al-356 alloy in chloride solutions by electrochemical techniques in rotating disk electrode. The cathodic reaction of oxygen reduction is the crucial stage of process dissolution of the material, which shows that is the oxygen transport which limits the corrosion process.
Resumo:
Bionanocomposites derived from poly(L-Lactide) (PLLA) were reinforced with chemically modified cellulose nanocrystals (m-CNCs). The effects of these modified cellulose nanoparticles on the mechanical and hydrolytic degradation behavior of polylactide were studied. The m-CNCs were prepared by a method in which hydrolysis of cellulose chains is performed simultaneously with the esterification of hydroxyl groups to produce modified nanocrystals with ester groups. FTIR, elemental analysis, TEM, XRD and contact angle measurements were used to confirm and characterize the chemical modifications of the m-CNCs. These bionanocomposites gave considerably better mechanical properties than neat PLLA based on an approximately 100% increase in tensile strength. Due to the hydrophobic properties of the esterified nanocrystals incorporated into a polymer matrix, it was also demonstrated that a small amount of m-CNCs could lead to a remarkable decrease in the hydrolytic degradation rate of the biopolymer. In addition, the m-CNCs considerably delay the degradation of the nanocomposite by providing a physical barrier that prevents the permeation of water, which thus hinders the overall absorption of water into the matrix. The results obtained in this study show the nanocrystals can be used to reinforce polylactides and fine-tune their degradation rates in moist or physiological environments.
Resumo:
Asphaltenes are blamed for various problems in the petroleum industry, especially formation of solid deposits and stabilization of water-in-oil emulsions. Many studies have been conducted to characterize chemical structures of asphaltenes and assess their phase behavior in crude oil or in model-systems of asphaltenes extracted from oil or asphaltic residues from refineries. However, due to the diversity and complexity of these structures, there is still much to be investigated. In this study, asphaltene (sub)fractions were extracted from an asphaltic residue (AR02), characterized by NMR, elemental analysis, X-ray fluorescence and MS-TOF, and compared to asphaltene subfractions obtained from another asphaltic residue (AR01) described in a previous article. The (sub)fractions obtained from the two residues were used to prepare model-systems containing 1 wt% of asphaltenes in toluene and their phase behavior was evaluated by measuring asphaltene precipitation onset using optical microscopy. The results obtained indicated minor differences between the asphaltene fractions obtained from the asphaltic residues of distinct origins, with respect to aromaticity, elemental composition (CHN), presence and content of heteroelements and average molar mass. Regarding stability, minor differences in molecule polarity appear to promote major differences in the phase behavior of each of the asphaltene fractions isolated.
Resumo:
Public organizations form a significant part of any economy, yet their buying behavior has received very little attention. Operating with complex public sector is further complicated when sales and marketing activities are done by foreign export partners. This thesis explores the buying behavior of public organizations and how partnership governance is influenced by it. The theoretical part focuses on two subjects. Firstly the strictly regulated purchase process, rigid decision making and other special characteristics of public organizations are examined. Secondly the thesis examines partnership governance forms and how coordination is arranged in the relationships. The empirical part investigates the subjects of public organization buying behavior and partnership governance using a case study of a Finnish SME and their two export partners. The findings suggest high degree of uniformity between public organizations enables the use of unilateral governance forms. By creating mutual dependence through training the possibility of adopting a purely bilateral governance form exists as well.
Resumo:
The purpose of the thesis is to study innovativeness in a context of the construction industry especially the front-end of the innovation process. The construction industry is often considered an old-fashioned manufacturing industry. Innovations and innovativeness are rarely linked to the industry. The construction industry, as well as other industries in Finland, is facing challenges such as productivity, the climate change and internationalization. The meaning of innovations is greater than ever in continuously changing markets, for standing out from competitors or increasing the competitiveness. Traditional production methods, tight building regulations, unique buildings, one-of-a-kind project organizations and highlighting the cheapest price in building contracts are particular challenges in the construction industry. The research questions of the thesis were: - What kind of factors shift the existing company culture towards innovativeness? - What are the phases of the front-end of the innovation process? - What kind of tools and methods enable managing the front-end of the innovation process? The theoretical part of the thesis bases on the literature review. The research methodology of the empirical part was the action research and qualitative approach. Empirical data was collected by the theme interviews from three companies. The results were practical methods and experiences from innovation activities of the companies. The results of the thesis can be clarified as follows: enhancement of the innovation activities requires support and commitment of the top management, innovative culture and innovation strategy. Innovativeness can be promoted by systematical methods for example collecting ideas from employees. Controlling and managing the front-end phase is essential to succeeding. Despite that managing the front-end is the most challenging part of the innovation process, development and management of that save companies’ money, resources and prevents useless investments. Further clarification and studies are needed to find out furthermore functional tools and methods to manage innovations and implementing them to the culture of the companies.
Resumo:
Solid Ln-OHCO3-DMCP compounds, where Ln represents lanthanides (III) and yttrium (III) ions and DMCP is the anion 4-dimethylaminocinnamylidenepyruvate, have been prepared. Thermogravimetry, derivative thermogravimetry (TG, DTG), differential scanning calorimetry (DSC), x-Ray diffraction powder patterns and elemental analysis have been used to characterize the compounds. The thermal stability as well as the thermal decomposition of these compounds were studied using an alumina crucible in an air atmosphere.
Resumo:
Solid state compounds of general formula M(DMCP)2.nH2O, where M represents Mg, Ca, Sr, Ba, and DMCP is 4-dimethylaminocinnamylidenepyruvate, and n = 1, except for Ca, where n = 2.5, have been prepared. Thermogravimetry, derivative thermogravimetry (TG, DTG), differential scanning calorimetry (DSC), X-ray diffraction powder patterns and complexometry were used to characterize and to study the thermal decomposition of these compounds.