988 resultados para SPATIAL PROPENSITY SCORE MATCHING
Resumo:
1.1 Fundamentals Chest pain is a common complaint in primary care patients (1 to 3% of all consultations) (1) and its aetiology can be miscellaneous, from harmless to potentially life threatening conditions. In primary care practice, the most prevalent aetiologies are: chest wall syndrome (43%), coronary heart disease (12%) and anxiety (7%) (2). In up to 20% of cases, potentially serious conditions as cardiac, respiratory or neoplasic diseases underlie chest pain. In this context, a large number of laboratory tests are run (42%) and over 16% of patients are referred to a specialist or hospitalized (2).¦A cardiovascular origin to chest pain can threaten patient's life and investigations run to exclude a serious condition can be expensive and involve a large number of exams or referral to specialist -‐ often without real clinical need. In emergency settings, up to 80% of chest pains in patients are due to cardiovascular events (3) and scoring methods have been developed to identify conditions such as coronary heart disease (HD) quickly and efficiently (4-‐6). In primary care, a cardiovascular origin is present in only about 12% of patients with chest pain (2) and general practitioners (GPs) need to exclude as safely as possible a potential serious condition underlying chest pain. A simple clinical prediction rule (CPR) like those available in emergency settings may therefore help GPs and spare time and extra investigations in ruling out CHD in primary care patients. Such a tool may also help GPs reassure patients with more common origin to chest pain.
Resumo:
In a weighted spatial network, as specified by an exchange matrix, the variances of the spatial values are inversely proportional to the size of the regions. Spatial values are no more exchangeable under independence, thus weakening the rationale for ordinary permutation and bootstrap tests of spatial autocorrelation. We propose an alternative permutation test for spatial autocorrelation, based upon exchangeable spatial modes, constructed as linear orthogonal combinations of spatial values. The coefficients obtain as eigenvectors of the standardised exchange matrix appearing in spectral clustering, and generalise to the weighted case the concept of spatial filtering for connectivity matrices. Also, two proposals aimed at transforming an acessibility matrix into a exchange matrix with with a priori fixed margins are presented. Two examples (inter-regional migratory flows and binary adjacency networks) illustrate the formalism, rooted in the theory of spectral decomposition for reversible Markov chains.
Resumo:
Although high-resolution peripheral quantitative computed tomography (HRpQCT) and central quantitative computed tomography (QCT) studies have shown bone structural differences between Chinese American (CH) and white (WH) women, these techniques are not readily available in the clinical setting. The trabecular bone score (TBS) estimates trabecular microarchitecture from dual-energy X-ray absorptiometry spine images. We assessed TBS in CH and WH women and investigated whether TBS is associated with QCT and HRpQCT indices. Areal bone mineral density (aBMD) by dual-energy X-ray absorptiometry, lumbar spine (LS) TBS, QCT of the LS and hip, and HRpQCT of the radius and tibia were performed in 71 pre- (37 WH and 34 CH) and 44 postmenopausal (21 WH and 23 CH) women. TBS did not differ by race in either pre- or postmenopausal women. In the entire cohort, TBS positively correlated with LS trabecular volumetric bone mineral density (vBMD) (r = 0.664), femoral neck integral (r = 0.651), trabecular (r = 0.641) and cortical vBMD (r = 0.346), and cortical thickness (C/I; r = 0.540) by QCT (p < 0.001 for all). TBS also correlated with integral (r = 0.643), trabecular (r = 0.574) and cortical vBMD (r = 0.491), and C/I (r = 0.541) at the total hip (p < 0.001 for all). The combination of TBS and LS aBMD predicted more of the variance in QCT measures than aBMD alone. TBS was associated with all HRpQCT indices (r = 0.20-0.52) except radial cortical thickness and tibial trabecular thickness. Significant associations between TBS and measures of HRpQCT and QCT in WH and CH pre- and postmenopausal women demonstrated here suggest that TBS may be a useful adjunct to aBMD for assessing bone quality.
Resumo:
According to Ljungqvist and Sargent (1998), high European unemployment since the 1980s can be explained by a rise in economic turbulence, leading to greater numbers of unemployed workers with obsolete skills. These workers refuse new jobs due to high unemployment benefits. In this paper we reassess the turbulence-unemployment relationship using a matching model with endogenous job destruction. In our model, higher turbulence reduces the incentives of employed workers to leave their jobs. If turbulence has only a tiny effect on the skills of workers experiencing endogenous separation, then the results of Lungqvist and Sargent (1998, 2004) are reversed, and higher turbulence leads to a reduction in unemployment. Thus, changes in turbulence cannot provide an explanation for European unemployment that reconciles the incentives of both unemployed and employed workers.
Resumo:
Background: Previous magnetic resonance imaging (MRI) studies in young patients with bipolar disorder indicated the presence of grey matter concentration changes as well as microstructural alterations in white matter in various neocortical areas and the corpus callosum. Whether these structural changes are also present in elderly patients with bipolar disorder with long-lasting clinical evolution remains unclear. Methods: We performed a prospective MRI study of consecutive elderly, euthymic patients with bipolar disorder and healthy, elderly controls. We conducted a voxel-based morphometry (VBM) analysis and a tract-based spatial statistics (TBSS) analysis to assess fractional anisotropy and longitudinal, radial and mean diffusivity derived by diffusion tensor imaging (DTI). Results: We included 19 patients with bipolar disorder and 47 controls in our study. Fractional anisotropy was the most sensitive DTI marker and decreased significantly in the ventral part of the corpus callosum in patients with bipolar disorder. Longitudinal, radial and mean diffusivity showed no significant between-group differences. Grey matter concentration was reduced in patients with bipolar disorder in the right anterior insula, head of the caudate nucleus, nucleus accumbens, ventral putamen and frontal orbital cortex. Conversely, there was no grey matter concentration or fractional anisotropy increase in any brain region in patients with bipolar disorder compared with controls. Limitations: The major limitation of our study is the small number of patients with bipolar disorder. Conclusion: Our data document the concomitant presence of grey matter concentration decreases in the anterior limbic areas and the reduced fibre tract coherence in the corpus callosum of elderly patients with long-lasting bipolar disorder.
Resumo:
This paper generalizes the original random matching model of money byKiyotaki and Wright (1989) (KW) in two aspects: first, the economy ischaracterized by an arbitrary distribution of agents who specialize in producing aparticular consumption good; and second, these agents have preferences suchthat they want to consume any good with some probability. The resultsdepend crucially on the size of the fraction of producers of each goodand the probability with which different agents want to consume eachgood. KW and other related models are shown to be parameterizations ofthis more general one.
Resumo:
What explains the spatial distribution of wages across US counties? I find that two of the most important factors are spatial technology diffusion and externalities due to the aggregate scale of production. One empirical finding supporting the importance of spatial technology diffusion is that average wages in a county decrease with the average level of schooling in neighboring counties when employment in the county and average wages in neighboring counties are held constant. All empirical results are obtained using anovel instrument for (endogenous) employment at the county-leveland take into account other factors (e.g. productivity-differencesacross states, climate) that may determine wages.
Resumo:
Aim This study used data from temperate forest communities to assess: (1) five different stepwise selection methods with generalized additive models, (2) the effect of weighting absences to ensure a prevalence of 0.5, (3) the effect of limiting absences beyond the environmental envelope defined by presences, (4) four different methods for incorporating spatial autocorrelation, and (5) the effect of integrating an interaction factor defined by a regression tree on the residuals of an initial environmental model. Location State of Vaud, western Switzerland. Methods Generalized additive models (GAMs) were fitted using the grasp package (generalized regression analysis and spatial predictions, http://www.cscf.ch/grasp). Results Model selection based on cross-validation appeared to be the best compromise between model stability and performance (parsimony) among the five methods tested. Weighting absences returned models that perform better than models fitted with the original sample prevalence. This appeared to be mainly due to the impact of very low prevalence values on evaluation statistics. Removing zeroes beyond the range of presences on main environmental gradients changed the set of selected predictors, and potentially their response curve shape. Moreover, removing zeroes slightly improved model performance and stability when compared with the baseline model on the same data set. Incorporating a spatial trend predictor improved model performance and stability significantly. Even better models were obtained when including local spatial autocorrelation. A novel approach to include interactions proved to be an efficient way to account for interactions between all predictors at once. Main conclusions Models and spatial predictions of 18 forest communities were significantly improved by using either: (1) cross-validation as a model selection method, (2) weighted absences, (3) limited absences, (4) predictors accounting for spatial autocorrelation, or (5) a factor variable accounting for interactions between all predictors. The final choice of model strategy should depend on the nature of the available data and the specific study aims. Statistical evaluation is useful in searching for the best modelling practice. However, one should not neglect to consider the shapes and interpretability of response curves, as well as the resulting spatial predictions in the final assessment.
Resumo:
We formulate a dynamic core-periphery model with frictions in the job matching process to study the interplay between trade costs, migration and regional unemploymentin the short- and long-run. We find that the spatial distribution of unemployment mirrors (inversely) the distribution of economic activities. Further, we highlight a contrast between the short-run and the long-run effects of trade-induced migration on regional unemployment. In particular, an inßow of immigrants from the periphery into the core reduces the unemployment gap in the short-run, but exacerbates unemployment disparities in the long-run.
Resumo:
This paper analyzes the problem of matching heterogeneous agents in aBayesian learning model. One agent gives a noisy signal to another agent,who is responsible for learning. If production has a strong informationalcomponent, a phase of cross-matching occurs, so that agents of low knowledgecatch up with those of higher one. It is shown that:(i) a greater informational component in production makes cross-matchingmore likely;(ii) as the new technology is mastered, production becomes relatively morephysical and less informational;(iii) a greater dispersion of the ability to learn and transfer informationmakes self-matching more likely; and(iv) self-matching leads to more self-matching, whereas cross-matching canmake less productive agents overtake more productive ones.
Resumo:
1. Aim - Concerns over how global change will influence species distributions, in conjunction with increased emphasis on understanding niche dynamics in evolutionary and community contexts, highlight the growing need for robust methods to quantify niche differences between or within taxa. We propose a statistical framework to describe and compare environmental niches from occurrence and spatial environmental data.¦2. Location - Europe, North America, South America¦3. Methods - The framework applies kernel smoothers to densities of species occurrence in gridded environmental space to calculate metrics of niche overlap and test hypotheses regarding niche conservatism. We use this framework and simulated species with predefined distributions and amounts of niche overlap to evaluate several ordination and species distribution modeling techniques for quantifying niche overlap. We illustrate the approach with data on two well-studied invasive species.¦4. Results - We show that niche overlap can be accurately detected with the framework when variables driving the distributions are known. The method is robust to known and previously undocumented biases related to the dependence of species occurrences on the frequency of environmental conditions that occur across geographic space. The use of a kernel smoother makes the process of moving from geographical space to multivariate environmental space independent of both sampling effort and arbitrary choice of resolution in environmental space. However, the use of ordination and species distribution model techniques for selecting, combining and weighting variables on which niche overlap is calculated provide contrasting results.¦5. Main conclusions - The framework meets the increasing need for robust methods to quantify niche differences. It is appropriate to study niche differences between species, subspecies or intraspecific lineages that differ in their geographical distributions. Alternatively, it can be used to measure the degree to which the environmental niche of a species or intraspecific lineage has changed over time.
Resumo:
This paper explains the divergent behavior of European an US unemploymentrates using a job market matching model of the labor market with aninteraction between shocks an institutions. It shows that a reduction inTF growth rates, an increase in real interest rates, and an increase intax rates leads to a permanent increase in unemployment rates when thereplacement rates or initial tax rates are high, while no increase inunemployment occurs when institutions are "employment friendly". The paperalso shows that an increase in turbulence, modelle as an increase probabilityof skill loss, is not a robust explanation for the European unemploymentpuzzle in the context of a matching model with both endogenous job creationand job estruction.
Resumo:
This paper theoretically and empirically documents a puzzle that arises when an RBC economy with a job matching function is used to model unemployment. The standard model can generate sufficiently large cyclical fluctuations in unemployment, or a sufficiently small response of unemployment to labor market policies, but it cannot do both. Variable search and separation, finite UI benefit duration, efficiency wages, and capital all fail to resolve this puzzle. However, either sticky wages or match-specific productivity shocks can improve the model's performance by making the firm's flow of surplus more procyclical, which makes hiring more procyclical too.
Resumo:
The knowledge on Atlantic Forest scarab beetle fauna is quite limited. This biome is strongly degraded and these insects can be used as bioindicators since they are sensitive to forest destruction and show distinct organizational patterns in forest fragments or in areas that have been deteriorated by human activity. Thus, a study of the Scarabaeidae (sensu stricto) dung beetles fauna that inhabit Serra do Japi, São Paulo, Brazil (23º12'-23º22' S and 46º53'-47º03'W) was carried out; the monthly species richness was analyzed in six areas during one year and the vegetation's structural physiognomy was described. The areas included a conserved and a degraded valley, a northward and a southward hillside, a hilltop, and an area of secondary forest growing under eucalyptus trees. The specimens were collected using four pitfall traps baited with human feces, which remained at each spot during 48 hours. Between September, 1997 and August, 1998, 3524 individuals of 39 species were collected; the most abundant were: Canthidium trinodosum, Eurysternus cyanescens, Uroxys kratochvili, Scybalocanthon nigriceps, Uroxys lata, Canthonella sp., Dichotomius assifer, Deltochilum furcatum, Canthidium sp.2, Canthon latipes, Deltochilum rubripenne, Eurysternus sp., and Dichotomius sp.1. The number of individuals and species was greater in the hot, rainy season, when there was a correlation between the number of species and the mean annual temperature [r²= 0.69; p<0.01]. The lower winter richness was most pronounced in the conserved valley, while richness remained relatively constant in the degraded valley; abundance was much higher in the degraded valley. The cluster analysis showed that the valleys and hillsides are the most similar in relation to species composition and abundance, yet different from the secondary forest with eucalypts and the hilltop.