987 resultados para SINGLE-WALL
Resumo:
Test results of 24 reinforced concrete wall panels in two-way action (i.e., supported on all the four sides) and subjected to in-plane vertical load are presented. The load is applied at an eccentricity to represent possible accidental eccentricity that occurs in practice due to constructional imperfections. Influences of aspect ratio, thinness ratio, slendemess ratio, vertical steel, and horizontal steel on the ultimate load are studied. Two equations are proposed to predict the ultimate load carried by the panels. The first equation is empirical and is arrived at from trial and error fitting with test data. The second equation is semi-empirical and is developed from a modification of the buckling strength of thin rectangular plates. Both the equations are formulated so as to give a safe prediction of a large portion of ultimate strength test results. Also, ultimate load cracking load and lateral deflections of identical panels in two-way action (all four sides supported) and oneway action (top and bottom sides only supported) are compared.
Resumo:
A new deep level transient spectroscopy technique is suggested which allows the deep level parameters to be obtained from a single temperature scan. Using large ratio t2/t1 of the measurement gate positions t1 and t2 and analyzing the steep high‐temperature side of the peak, it is demonstrated that the deep level activation energy can be determined with high accuracy.
Resumo:
Formation of crystalline, monophasic indium selenide (InSe) thin solid films by elemental evaporation on hot glass substrates (400 to 530 K) is reported. The compound formation as well as the composition of the formed films are confirmed by X-ray photoelectron spectroscopy (XPS) analysis. The crystallinity of the rhombohedral InSe films can be improved by post-depositional annealing for t < 30 min at 533 K. The InSe thin films become Se-deficient at higher temperatures of deposition or longer duration of annealing. Optical studies reveal the bandgap to be around 1.29 eV. Under optimum conditions of preparations the lowest resistivity of ≈ 12.8 Ω cm is obtained. Durch Verdampfen aus den Elementen auf heiße Glassubstrate (400 bis 530 k) werden dünne, kristalline, einphasige Indiumselenid (InSe)-Festkörperschichten gebildet. Sowohl die Bildung der Verbindung als auch die Zusammensetzung der Schichten werden durch Röntgen-Photoelektronenspektroskopie (XPS) untersucht. Die Kristallinität der rhomboedrischen InSe-Schichten kann durch eine Temperung bei 533 K für t < 30 min nach der Abscheidung verbessert werden. Die dünnen InSe-Schichten zeigen nach Abscheidung bei höheren Temperaturen oder längerer Temperungsdauer einen Se-Unterschuß. Optische Untersuchungen ergeben, daß die Bandlücke bei etwa 1,29 eV liegt. Unter optimalen Präperationsbedingungen wird ein niedrigster Widerstand von ≈ 12.8 Ω cm erreicht.
Resumo:
Potassium titanyl phosphate (KTP) is a relatively new nonlinear optical material with excellent combination of physical properties. This paper presents the combined etching and X-ray topographic studies carried out on KTP crystals with a view to characterizing their defects. KTP crystals employed in this investigation were grown from flux. Optical microscopic study of habit faces revealed growth layers and growth hillocks on (100) and (011) faces respectively. Etching of (011) habit faces proved that growth hillocks corresponded to the emergence point of dislocation out crops on these faces. The suitability of the new etchant to reveal dislocation was confirmed by etching the matched pairs obtained by cleaving. The defects present in the crystal were also studied by X-ray topography. The defect configuration in these crystals is characteristic of crystals grown from solution. The dislocations arc predominantly linear with their origin either at the nucleation centre or inclusions. In general, grown crystals were found to have low dislocation density and often large volumes of crystals free from dislocation could be obtained.
Resumo:
Moonlighting functions have been described for several proteins previously thought to localize exclusively in the cytoplasm of bacterial or eukaryotic cells. Moonlighting proteins usually perform conserved functions, e. g. in glycolysis or as chaperonins, and their traditional and moonlighting function(s) usually localize to different cell compartments. The most characterized moonlighting proteins in Grampositive bacteria are the glycolytic enzymes enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which function in bacteria-host interactions, e. g. as adhesins or plasminogen receptors. Research on bacterial moonlighting proteins has focused on Gram-positive bacterial pathogens, where many of their functions have been associated with bacterial virulence. In this thesis work I show that also species of the genus Lactobacillus have moonlighting proteins that carry out functions earlier associated with bacterial virulence only. I identified enolase, GAPDH, glutamine synthetase (GS), and glucose-6-phosphate isomerase (GPI) as moonlighting proteins of Lactobacillus crispatus strain ST1 and demonstrated that they are associated with cell surface and easily released from the cell surface into incubation buffer. I also showed that these lactobacillar proteins moonlight either as adhesins with affinity for basement membrane and extracellular matrix proteins or as plasminogen receptors. The mechanisms of surface translocation and anchoring of bacterial moonlighting proteins have remained enigmatic. In this work, the surface localization of enolase, GAPDH, GS and GPI was shown to depend on environmental factors. The members of the genus Lactobacillus are fermentative organisms that lower the ambient pH by producing lactic acid. At acidic pH enolase, GAPDH, GS and GPI were associated with the cell surface, whereas at neutral pH they were released into the buffer. The release did not involve de novo protein synthesis. I showed that purified recombinant His6-enolase, His6-GAPDH, His6-GS and His6-GPI reassociate with cell wall and bind in vitro to lipoteichoic acids at acidic pH. The in-vitro binding of these proteins localizes to cell division septa and cell poles. I also show that the release of moonlighting proteins is enhanced in the presence of cathelicidin LL- 37, which is an antimicrobial peptide and a central part of the innate immunity defence. I found that the LL-37-induced detachment of moonlighting proteins from cell surface is associated with cell wall permeabilization by LL-37. The results in this thesis work are compatible with the hypothesis that the moonlighting proteins of L. crispatus associate to the cell wall via electrostatic or ionic interactions and that they are released into surroundings in stress conditions. Their surface translocation is, at least in part, a result from their release from dead or permeabilized cells and subsequent reassociation onto the cell wall. The results of this thesis show that lactobacillar cells rapidly change their surface architecture in response to environmental factors and that these changes influence bacterial interactions with the host.
Resumo:
Influence of various gases on the intensity of single bubble sonoluminescence has been studied. The gases used were air, oxygen, nitrogen, argon and helium. Among these oxygen gave the brightest intensity with nitrogen giving the least.
Resumo:
Better fatigue performance of adhesively bonded joints makes them suitable for most structural applications. However, predicting the service life of bonded joints accurately remains a challenge. In this present study, nonlinear computational simulations have been performed on adhesively bonded single lap ASTM-D1002 shear joint considering both geometrical and material nonlinearities to predict the fatigue life by judiciously applying the modified Coffin-Manson equation for adhesive joints. Elasto-plastic material models have been employed for both the adhesive and the adherends. The predicted life has close agreement in the high cycle fatigue (HCF) regime with empirical observations reported in the literature. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Structure at the polypurine-polypyrimidine sequences flanking the HpaII sites (CCGG) in pBR322 form V DNA was probed employing single-hit analysis using HpaII restriction endonuclease. Reduced cleavage efficiency of HpaII sites flanked by polypurine-polypyrimidine sequences suggested that under high torsional stress these sequences adopt unwound structures rendering these sites insensitive to restriction enzyme cleavage. In addition to polypurine-polypyrimidine sequences. HpaII sites flanked by alternating purine-pyrimidine sequence, a potential motif of left handed Z-DNA, were also found to be resistant to HpaII cleavage. Results obtained from various studies implicating structure sensitivity of restriction endonucleases and methylases were compiled and a direct correlation was observed between the occurrence of altered sites in a domain and its G/C content in pBR322 form V DNA.
Relationship between the controllability grammian and closed-loop eigenvalues: the single input case
Resumo:
The controllability grammian is important in many control applications. Given a set of closed-loop eigenvalues the corresponding controllability grammian can be obtained by computing the controller which assigns the eigenvalues and then by solving the Lyapunov equation that defines the grammian. The relationship between the controllability grammian, resulting from state feedback, and the closed-loop eigenvalues of a single input linear time invariant (LTI) system is obtained. The proposed methodology does not require the computation of the controller that assigns the specified eigenvalues. The closed-loop system matrix is obtained from the knowledge of the open-loop system matrix, control influence matrix and the specified closed-loop eigenvalues. Knowing the closed-loop system matrix, the grammian is then obtained from the solution of the Lyapunov equation that defines it. Finally the proposed idea is extended to find the state covariance matrix for a specified set of closed-loop eigenvalues (without computing the controller), due to impulsive input in the disturbance channel and to solve the eigenvalue assignment problem for the single input case.
Resumo:
The present work describes the evolution of a strong, single-component rotated-Brass ((1 1 0) < 5 5 6 >) texture in an Al-Zn-Mg-Cu-Zr alloy by an uneven hot cross-rolling with frequent interpass annealing. This texture development is unique because hot rolling of aluminum alloys results in orientation distribution along the ``beta-fibre''. It has been demonstrated that the deformation by cross-rolling of a partially recrystallized grain structure having rotated-Cube and Goss orientations, and the recrystallization resistance of near-Brass-oriented elongated grains play a critical role in development of this texture. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
High quality, single-crystalline alpha-MoO3 nanofibers are synthesized by rapid hydrothermal method using a polymeric nitrosyl-complex of molybdenum(II) as molybdenum source without employing catalysts, surfactants, or templates. The possible reaction pathway is decomposition and oxidation of the complex to the polymolybdate and then surface condensation on the energetically favorable 001] direction in the initially formed nuclei of solid alpha-MoO3 under hydrothermal conditions. Highly crystalline alpha-MoO3 nanofibers have grown along 001] with lengths up to several micrometres and widths ranging between 280 and 320 nm. The alpha-MoO3 nanofibers exhibit desirable electrochemical properties such as high capacity reversibility as a cathode material of a Li-ion battery.
Resumo:
A novel approach for simultaneous measurement of strain and temperature with a single tapered fiber Bragg grating is proposed. This method is based on the fact that the reflectivity at central wavelength of FBG reflection changes with chirp (strain gradient). A diode laser is locked to the central wavelength of FBG reflection. Central wavelength of the FBG shifts with temperature. Change in reflectivity & wavelength of the diode laser were used to measure strain and temperature on the FBG respectively.
Resumo:
Reaction of the bicyclic phosphazane N5P4Et5Cl2 with 2,6-dimethylphenol and subsequent oxidation of the product by aqueous hydrogen peroxide yields N5P4Et5O4(OC6H3Me2-2,6)2 in 85% yield. Its structure has been established by NMR spectroscopy and single-crystal X-ray diffraction. The compound crystallises in the monoclinic space group C2/c with a= 21.245(5), b= 10.879(2), c= 16.450(6)Å, ?= 123.94(2)°, Z= 4, R= 0.066. The structural features are compared with those of bicyclic ?5-phosphazenes of type N5P4R3(NR1R2)5(NHR3)(R1,R3= Me or Et, R2= H or Me). The observed conformation of the N3P3 rings in the present compound is mainly dictated by the maximisation of the stabilising influence of �negative hyperconjugative interactions� between the nitrogen lone pairs and the adjacent P�X ?* orbitals.
Resumo:
A novel approach for simultaneous measurement of chirp (any parameter that can induce strain gradient on FBG) and temperature using a single FBG is proposed. Change in reflectivity at central wavelength of FBG reflection & Bragg wavelength shifts induced due to temperature were used for chirp & temperature measurements respectively. Theoretical resolution limit for chirp and temperature using an Optical Spectrum Analyzer (OSA) with 1pm wavelength resolution and >58dB dynamic range are 12.8fm and 1/13 degrees C respectively.
Resumo:
Many previous studies regarding the estimation of mechanical properties of single walled carbon nanotubes (SWCNTs) report that, the modulus of SWCNTs is chirality, length and diameter dependent. Here, this dependence is quantitatively described in terms of high accuracy curve fit equations. These equations allow us to estimate the modulus of long SWCNTs (lengths of about 100-120 nm) if the value at the prescribed low lengths (lengths of about 5-10 nm) is known. This is supposed to save huge computational time and expense. Also, based on the observed length dependent behavior of SWCNT initial modulus, we predict that, SWCNT mechanical properties such as Young's modulus, secant modulus, maximum tensile strength, failure strength, maximum tensile strain and failure strain might also exhibit the length dependent behavior along with chirality and length dependence. (C) 2010 Elsevier B.V. All rights reserved.