953 resultados para SILLENITE CRYSTALS
Resumo:
We have investigated doped and undoped layers of microcrystalline silicon prepared by hot-wire chemical vapour deposition optically, electrically and by means of transmission electron microscopy. Besides needle-like crystals grown perpendicular to the substrate's surface, all of the layers contained a noncrystalline phase with a volume fraction between 4% and 25%. A high oxygen content of several per cent in the porous phase was detected by electron energy loss spectrometry. Deep-level transient spectroscopy of the crystals suggests that the concentration of electrically active defects is less than 1% of the undoped background concentration of typically 10^17 cm -3. Frequency-dependent measurements of the conductance and capacitance perpendicular to the substrate surface showed that a hopping process takes place within the noncrystalline phase parallel to the conduction in the crystals. The parasitic contribution to the electrical circuit arising from the porous phase is believed to be an important loss mechanism in the output of a pin-structured photovoltaic solar cell deposited by hot-wire CVD.
Resumo:
Työssä tutkittiin leijupetikiteyttimen toimivuutta sulfatiatsolikiteiden kasvunopeuksien mittaamisessa. Sulfatiatsoli on lääkeaine, jota käytetään antibioottina. Kirjallisuusosassa on käsitelty kiteytyksen perusteita sekä olosuhteiden vaikutuksia kidemorfologiaan. Koska kyseessä on lääkeaine, on työssä myös selvitetty tekijöitä, jotka vaikuttavat syntyvän kiteen polymorfimuotoon. Näitä ovat mm. siemenkiteen polymorfimuoto sekä käytetty liuotin. Kirjallisuusosassa on myös esitelty teollisia ja laboratoriomittakaavan leijupetikiteyttimiä. Kokeellisessa osassa on keskitytty testaamaan leijupetikiteyttimen toimintaa sekä etsimään sopivia olosuhteita kasvukokeiden suorittamiselle. Kokeissa tutkittiin ylikylläisyyden vaikutusta sulfatiatsolikiteen kasvuun. Kiteen kasvun seurantaan pyrittiin etsimään sopivia hiukkaskokoanalysaattoreita. Mittauksissa käytetyt laitteistot olivat PIA 4000 mod LUT on-line-videomikroskooppi ja laserdiffraktioon perustuva Coulter LS 130 off-line-partikkelikokoanalysaattori.
Resumo:
Työssä on tutkittu epäpuhtauksien vaikutusta kastelulannoitesuolojen monokaliumfosfaatin, kaliumnitraatin ja ureafosfaatin kiteytyksessä. Kirjallisuusosassa on käsitelty kastelulannoiteprosessit ja epäpuhtauksien vaikutus kastelulannoitteiden valmistuksessa. Kiteytys ja kiteenkasvu on esitetty perusyhtälöin, joissa on otettu epäpuhtauksien vaikutus huomioon. Tarkemmin on perehdytty monokaliumfosfaatin kiteytykseen ja kolmenarvoisten kationeiden, Al3+, Fe3+ ja Cr3+, vaikutukseen kiteiden kasvuun. Kolmenarvoiset metalli-ionit adsorboituvat kiteen pintaan haitaten kiteenkasvua, mikä vaikuttaa erityisesti kiteen prismapinnan kasvuun. Lisäksi on esitelty muita kiteenkasvuun vaikuttavia olosuhteita. Lopuksi on käsitelty kompleksinmuodostajia metalli-ionien haitallisten vaikutusten ehkäisijöinä. Kokeellisessa osassa suoritettiin liukoisuuskokeita monokaliumfosfaatin liukoisuuden selvittämiseksi eri pH-olosuhteissa. Suoritetuissa yksikidekokeissa tutkittiin pH:n ja kolmenarvoisten kationeiden; Al3+, Fe3+ ja Cr3+, vaikutus monokaliumfosfaattikiteen pituus- ja leveyskasvuun ja kidemuotoon eri ylikylläisyyksillä. Lisäksi tutkittiin voidaanko lämpötilaa ja pH muuttamalla tai pyrofosfaattia lisäämällä poistaa raudan kasvua inhiboima vaikutus. Kiteytyslämpötilaa nostamalla voidaan poistaa raudan haitallinen vaikutus kiteen kasvuun.
Resumo:
Piikarbidi (SiC) on tunnettu korkealuokkaisena hioma-aineena ja hiekkapaperin pin-noitteena yli 100 vuoden ajan. Nykyisin ainetta käytetään pääasiassa puolijohteiden raaka-aineena. Piikarbidi on puolijohteena ylivoimainen tavanomaiseen piihin (Si) verrattuna lähes joka suhteessa johtuen sen kiderakenteesta, mutta sen valmistus on osoittautunut erittäin monimutkaiseksi johtuen pääasiassa vaikeudesta kasvattaa riittävän suuria ja laadukkaita SiC-kiteitä. Siksi tehoelektroniikan SiC-puolijohdekomponenttien laajamittaista käyttöä joudutaan yhä odottamaan. Tässä diplomityössä tehdään perusteellinen selvitys, miten piikarbidin valmistuspro-sessit eroavat normaaleista piin valmistusprosesseista, mitä etuja piikarbidin käytöllä saavutetaan ja vastaavasti mitä varjopuolia sillä on. Työssä selvitetään tällä hetkellä markkinoilla olevien SiC-tehopuolijohdekomponenttien ominaisuuksia, ketkä ovat teh-neet tutkimusta alalla, sekä esitetään arvioita SiC-tekniikan tulevaisuuden näkymistä.
Resumo:
Bi1.5Zn1Nb1.5O7 (BZN) epitaxial thin films were grown by pulsed laser deposition on Al2O3 with a double ZnO buffer layer through domain matching epitaxy (DME) mechanism. The pole figure analysis and reciprocal space mapping revealed the single crystalline nature of the thin film. The pole figure analysis also shows a 60º twinning for the (222) oriented crystals. Sharp intense spots in the SAED pattern also indicate the high crystalline nature of BZN thin film. The Fourier filtered HRTEM images of the BZN-ZnO interface confirms the domain matched epitaxy of BZN with ZnO buffer. An electric field dependent dielectric tunability of 68% was obtained for the BZN thin films with inter digital capacitors patterned over the film.
Resumo:
INTRODUCTION: The performance of ultrasound (US) in the diagnosis of acute gouty (MSU) arthritis and calcium pyrophosphate (CPP) arthritis is not yet well defined. Most studies evaluated US as the basis for diagnosing crystal arthritis in already diagnosed cases of gout and few prospective studies have been performed. METHODS: One hundred nine consecutive patients who presented an acute arthritis of suspected microcrystalline arthritis were prospectively included. All underwent an US of the symptomatic joints(s) and of knees, ankles and 1(st) metatarsopalangeal (MTP) joints by a rheumatologist "blinded" to the clinical history. 92 also had standard X-rays. Crystal identification was the gold standard. RESULTS: Fifty-one patients had MSU, 28 CPP and 9 had both crystals by microscopic analysis. No crystals were detected in 21. One had septic arthritis. Based on US signs in the symptomatic joint, the sensitivity of US for both gout and CPP was low (60 % for both). In gout, the presence of US signs in the symptomatic joint was highly predictive of the diagnosis (PPV = 92 %). When US diagnosis was based on an examination of multiple joints, the sensitivity for both gout and CPP rose significantly but the specificity and the PPV decreased. In the absence of US signs in all the joints studied, CPP arthritis was unlikely (NPV = 87 %) particularly in patients with no previous crisis (NPV = 94 %). X-ray of the symptomatic joints was confirmed to be not useful in diagnosing gout and was equally sensitive or specific as US in CPP arthritis. CONCLUSIONS: Arthrocenthesis remains the key investigation for the diagnosis of microcrystalline acute arthritis. Although US can help in the diagnostic process, its diagnostic performance is only moderate. US should not be limited to the symptomatic joint. Examination of multiple joints gives a better diagnostic sensitivity but lower specificity.
Resumo:
INTRODUCTION: The acute gout flare results from a localised self-limiting innate immune response to monosodium urate (MSU) crystals deposited in joints in hyperuricaemic individuals. Activation of the caspase recruitment domain-containing protein 8 (CARD8) NOD-like receptor pyrin-containing 3 (NLRP3) inflammasome by MSU crystals and production of mature interleukin-1β (IL-1β) is central to acute gouty arthritis. However very little is known about genetic control of the innate immune response involved in acute gouty arthritis. Therefore our aim was to test functional single nucleotide polymorphism (SNP) variants in the toll-like receptor (TLR)-inflammasome-IL-1β axis for association with gout. METHODS: 1,494 gout cases of European and 863 gout cases of New Zealand (NZ) Polynesian (Māori and Pacific Island) ancestry were included. Gout was diagnosed by the 1977 ARA gout classification criteria. There were 1,030 Polynesian controls and 10,942 European controls including from the publicly-available Atherosclerosis Risk in Communities (ARIC) and Framingham Heart (FHS) studies. The ten SNPs were either genotyped by Sequenom MassArray or by Affymetrix SNP array or imputed in the ARIC and FHS datasets. Allelic association was done by logistic regression adjusting by age and sex with European and Polynesian data combined by meta-analysis. Sample sets were pooled for multiplicative interaction analysis, which was also adjusted by sample set. RESULTS: Eleven SNPs were tested in the TLR2, CD14, IL1B, CARD8, NLRP3, MYD88, P2RX7, DAPK1 and TNXIP genes. Nominally significant (P < 0.05) associations with gout were detected at CARD8 rs2043211 (OR = 1.12, P = 0.007), IL1B rs1143623 (OR = 1.10, P = 0.020) and CD14 rs2569190 (OR = 1.08; P = 0.036). There was significant multiplicative interaction between CARD8 and IL1B (P = 0.005), with the IL1B risk genotype amplifying the risk effect of CARD8. CONCLUSION: There is evidence for association of gout with functional variants in CARD8, IL1B and CD14. The gout-associated allele of IL1B increases expression of IL-1β - the multiplicative interaction with CARD8 would be consistent with a synergy of greater inflammasome activity (resulting from reduced CARD8) combined with higher levels of pre-IL-1β expression leading to increased production of mature IL-1β in gout.
Resumo:
Spectroscopic ellipsometry and high resolution transmission electron microscopy have been used to characterize microcrystalline silicon films. We obtain an excellent agreement between the multilayer model used in the analysis of the optical data and the microscopy measurements. Moreover, thanks to the high resolution achieved in the microscopy measurements and to the improved optical models, two new features of the layer-by-layer deposition of microcrystalline silicon have been detected: i) the microcrystalline films present large crystals extending from the a-Si:H substrate to the film surface, despite the sequential process in the layer-by-layer deposition; and ii) a porous layer exists between the amorphous silicon substrate and the microcrystalline silicon film.
Resumo:
WonderAlp est un cabinet de curiosités réalisé à partir d'une documentation provenant d'anciens ouvrages de voyages dans les Alpes. L'app présente des images de dragons, de fossiles, de cristaux, de plantes, d'animaux, de phénomènes naturels. Elle donne des clés pour retrouver et comprendre l'émerveillement devant la nature qui animait la science à l'époque de la curiosité (XVIe-XVIIIe siècles). WonderAlp is a cabinet of curiosities that transforms your iPad or Android into an Early Modern Wunderkammer. It displays objects discovered in the Alps during the early period of exploration. These are grouped under three titles : "Dragons of the Alps", "Fossils and Crystals", "Plants to Landscapes". It helps apprehend a natural world that is both rational and wonderful, scholarly and popular, unlike the compartmentalized thinking of modern life.
Resumo:
Activation of the nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome initiates an inflammatory response, which is associated with host defense against pathogens and the progression of chronic inflammatory diseases such as gout and atherosclerosis. The NLRP3 inflammasome mediates caspase-1 activation and subsequent IL-1β processing in response to various stimuli, including extracellular ATP, although the roles of intracellular ATP (iATP) in NLRP3 activation remain unclear. In this study, we found that in activated macrophages artificial reduction of iATP by 2-deoxyglucose, a glycolysis inhibitor, caused mitochondrial membrane depolarization, leading to IL-1β secretion via NLRP3 and caspase-1 activation. Additionally, the NLRP3 activators nigericin and monosodium urate crystals lowered iATP through K(+)- and Ca(2+)-mediated mitochondrial dysfunction, suggesting a feedback loop between iATP loss and lowering of mitochondrial membrane potential. These results demonstrate the fundamental roles of iATP in the maintenance of mitochondrial function and regulation of IL-1β secretion, and they suggest that maintenance of the intracellular ATP pools could be a strategy for countering NLRP3-mediated inflammation.
Resumo:
OBJECTIVES: Basic calcium phosphate (BCP) crystal and interleukin 6 (IL-6) have been implicated in osteoarthritis (OA). We hypothesise that these two factors may be linked in a reciprocal amplification loop which leads to OA. METHODS: Primary murine chondrocytes and human cartilage explants were incubated with hydroxyapatite (HA) crystals, a form of BCP, and the modulation of cytokines and matrix-degrading enzymes assayed. The ability of IL-6 to stimulate chondrocyte calcification was assessed in vitro. The mechanisms underlying the effects of HA on chondrocytes were investigated using chemical inhibitors, and the pathways mediating IL-6-induced calcification characterised by quantifying the expression of genes involved in chondrocyte mineralisation. The role of calcification in vivo was studied in the meniscectomy model of murine OA (MNX), and the link between IL-6 and cartilage degradation investigated by histology. RESULTS: In chondrocytes, BCP crystals stimulated IL-6 secretion, further amplified in an autocrine loop, through signalling pathways involving Syk and PI3 kinases, Jak2 and Stat3 molecules. Exogenous IL-6 promoted calcium-containing crystal formation and upregulation of genes involved in calcification: the pyrophosphate channel Ank, the calcium channel Annexin5 and the sodium/phosphate cotransporter Pit-1. Treatment of chondrocytes with IL-6 inhibitors significantly inhibited IL-6-induced crystal formation. In meniscectomised mice, increasing deposits of BCP crystals were observed around the joint and correlated with cartilage degradation and IL-6 expression. Finally, BCP crystals induced proteoglycan loss and IL-6 expression in human cartilage explants, which were reduced by an IL-6 inhibitor. CONCLUSIONS: BCP crystals and IL-6 form a positive feedback loop leading to OA. Targeting calcium-containing crystal formation and/or IL-6 are promising therapeutic strategies in OA.
Resumo:
Studies of the kinetics of electrocatalytic reactions on well oriented single crystal surfaces have demonstrated the influence of surface structure on the rate and mechanisms of many electrochemical processes. The preparation and characterization of these surfaces is the first step in this type of studies. In this paper, a methodology employed in order to ensure the quality and cleanliness of single crystals and their utilization as rotating electrodes is described.
Resumo:
Scanning tunnelling microscopy (STM) was used to characterise the basal surface of fresh cleaved crystals of 2H-WS2. Although no impurity or stacking faults could be detected by X-ray diffraction, STM images obtained with negative bias voltage showed two kinds of defects. These defects were attributed to an iodine derivative used as transport agent. In a flat surface free of defects, an image with atomic resolution was achieved with sulphur distances and angles as expected for hexagonal symmetry of 2H-WS2.
Resumo:
This paper describes in detail a technique employed to grow quasi-spherical single crystals of noble metals for electrochemical applications, using platinum as an example. The metal beads were formed by melting the extremity of a wire in an oxygen / butane flame. X-ray techniques were used to check the crystallization and to determine the orientation of the crystals. Treatment with a pure hydrogen flame followed by a cooling procedure in a hydrogen / argon atmosphere were used for conditioning the well-defined platinum single crystal surfaces. Finally, electrochemical characterization of the Pt(111), Pt(110) and Pt(100) surfaces was done in diluted sulfuric acid solution in the hydrogen adsorption / desorption potential region.
Resumo:
Nanoparticles offer adjustable and expandable reactive surface area compared to the more traditional solid phase forms utilized in bioaffinity assays due to the high surface to-volume ratio. The versatility of nanoparticles is further improved by the ability to incorporate various molecular complexes such as luminophores into the core. Nanoparticle labels composed of polystyrene, silica, inorganic crystals doped with high number of luminophores, preferably lanthanide(III) complexes, are employed in bioaffinity assays. Other label species such as semiconductor crystals (quantum dots) or colloidal gold clusters are also utilized. The surface derivatization of such particles with biomolecules is crucial for the applicability to bioaffinity assays. The effectiveness of a coating is reliant on the biomolecule and particle surface characteristics and the selected coupling technique. The most critical aspects of the particle labels in bioaffinity assays are their size-dependent features. For polystyrene, silica and inorganic phosphor particles, these include the kinetics, specific activity and colloidal stability. For quantum dots and gold colloids, the spectral properties are also dependent on particle size. This study reports the utilization of europium(III)-chelate-embedded nanoparticle labels in the development of bioaffinity assays. The experimental covers both the heterogeneous and homogeneous assay formats elucidating the wide applicability of the nanoparticles. It was revealed that the employment of europium(III) nanoparticles in heterogeneous assays for viral antigens, adenovirus hexon and hepatitis B surface antigen (HBsAg), resulted in sensitivity improvement of 10-1000 fold compared to the reference methods. This improvement was attributed to the extreme specific activity and enhanced monovalent affinity of the nanoparticles conjugates. The applicability of europium(III)-chelate-doped nanoparticles to homogeneous assay formats were proved in two completely different experimental settings; assays based on immunological recognition or proteolytic activity. It was shown that in addition to small molecule acceptors, particulate acceptors may also be employed due to the high specific activity of the particles promoting proximity-induced reabsorptive energy transfer in addition to non-radiative energy transfer. The principle of proteolytic activity assay relied on a novel dual-step FRET concept, wherein the streptavidin-derivatized europium(III)-chelate-doped nanoparticles were used as donors for peptide substrates modified with biotin and terminal europium emission compliant primary acceptor and a secondary quencher acceptor. The recorded sensitized emission was proportional to the enzyme activity, and the assay response to various inhibitor doses was in agreement with those found in literature showing the feasibility of the technique. Experiments regarding the impact of donor particle size on the extent of direct donor fluorescence and reabsorptive excitation interference in a FRET-based application was conducted with differently sized europium(III)-chelate-doped nanoparticles. It was shown that the size effect was minimal