941 resultados para Ruthenium (II) Complexes
Resumo:
An effective electrochemiluminescence (ECL) sensor based on Nafion/poly(sodium 4-styrene sulfonate) (PSS) composite film-modified ITO electrode was developed. The Nafion/PSS/Ru composite film was characterized by atomic force microscopy, UV-vis absorbance spectroscopy and electrochemical experiments. The Nafion/PSS composite film could effectively immobilize tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3)(2+)) via ion-exchange and electrostatic interaction. The ECL behavior of Ru(bpy)(3)(2+) immobilized in Nafion/PSS composite film was investigated using tripropylamine (TPA) as an analyte. The detection limit (S/N = 3) for TPA at the Nafion/PSS/Ru composite-modified electrode was estimated to be 3.0 nM, which is 3 orders of magnitude lower than that obtained at the Nafion/Ru modified electrode. The Nafion/PSS/Ru composite film-modified indium tin oxide (ITO) electrode also exhibited good ECL stability. In addition, this kind of immobilization approach was simple, effective, and timesaving.
Resumo:
Tris(2,2'-bipyridine)ruthenium(II) ((Ru(bpy)(3)](2+)) is one of the most extensively studied and used electrochemiluminescent (ECL) compounds owing to its superior properties, which include high sensitivity and stability under moderate conditions in aqueous solution. In this paper we present a simple method for the preparation of [Ru(bpy)(3)](2+)-containing microstructures based on electrostatic assembly The formation of such micro-structures occurs in a single process by direct mixing of aqueous solutions of [Ru(bpy)(3)]Cl-2 and K-3[Fe(CN)(6)] at room temperature. The electrostatic interactions between [Ru(bpy)(3)]Cl-2 cations and [Fe(CN)(6)](3-) anions cause them to assemble into the resulting microstructures. Both the molar ratio and concentration of reactants were found to have strong influences on the formation of these microstructures. Most importantly, the resulting [Ru(bpy)(3)](2+)- containing microstructures exhibit excellent ECL behavior and, therefore, hold great promise for solid-state ECL detection in capillary electrophoresis (CE) or CE microchips.
Resumo:
Polyethyleneimine-functionalized platinum nanoparticles (PtNPs) with excellent electrochemiluminescence (ECL) properties were synthesized and applied to the amplified analysis of biomolecules. These particles were prepared at room temperature, with hyperbranched polyethyleneimine (HBPEI) as the stabilizer. The UV/Vis absorption spectra and transmission electron microscopy images clearly confirmed the formation of monodisperse PtNPs. Such particles proved to possess high stability against salt-induced aggregation, enabling them to be employed even under high-salt conditions. Owing to the existence of many tertiary amine groups, these particles exhibited excellent ECL behavior in the presence of tris(2.2'-bipyridyl)ruthenium(II). An HBPEI-coated particle possessed an ECL activity that was at least 60 times higher than that of a tripropylamine molecule. Furthermore, these particles could be immobilized on the 3-aminopropyltriethoxysilane-treated quartz substrates to amplify the binding sites for carboxyl groups. Through this approach, PtNPs were applied to the amplified analysis of the hemin/G-quadruplex DNAzyme by using the luminol/H2O2 chemiluminescence method.
Resumo:
Herein, homogenously partial sulfonation of polystyrene (PSP) was performed. An effective electrochemiluminescence (ECL) sensor based on PSP with carbon nanotube (CNTs) composite film was developed. Cyclic voltammetry and electrochemical impendence spectroscopy were applied to characterize this composite film. The PSP was used as an immobilization matrix to entrap the ECL reagent Ru(bpy)(3)(2+) due to the electrostatic interactions between sulfonic acid groups and Ru(bpy)(3)(2+) cations. The introduction of CNTs into PSP acted not only as a conducting pathway to accelerate the electron transfer but also as a proper matrix to immobilize Ru(bpy)(3)(2+) on the electrode by hydrophobic interaction. Furthermore, the results indicated the ECL intensity produced at this composite film was over 3-fold compared with that of the pure PSP film due to the electrocatalytic activity of the CNTs. Such a sensor was verified by the sensitive determinations of 2-(dibutylamino)ethanol and tripropylamine.
Resumo:
Capillary electrophoresis with electrochemiluminescene detection was used to characterize procaine hydrolysis as a probe for butyrylcholinesterase by in vitro procaine metabolism in plasma with butyrylcholinesterase acting as bioscavenger. Procaine and its metabolite N,N-diethylethanolamine were separated at 16 kV and then detected at 1.25 V in the presence of 5.0 mM Ru(bpy)(3)(2+), with the detection limits of 2.4 x 10(-7) and 2.0 x 10(-8) mol/L (S/N=3), respectively. The Michaelis constant K-m value was 1.73 x 10(-4) mol/L and the maximum velocity V-max was 1.62 x 10(-6) mol/L/min. Acetylcholine bromide and choline chloride presented inhibition effects on the enzymatic cleavage of procaine, with the 50% inhibition concentration (IC50) of 6.24 x 10(-3) and 2.94 x 10(-4) mol/L.
Resumo:
One-step synthesis of Ru (bpy)(3) Cl-2-immobilized (bpy = 2,2'-bipyridine) silica nanoparticles (Ru-silica nanoparticles) for use in electrogenerated-chemiluminescence (ECL) detection is reported. Ru-silica nanoparticles are prepared by using the Stober method. Compared with free Ru(bpy)(3)Cl-2, Ru-silica nanoparticles are seen to exhibit a red-shift of the UV-vis absorbance peak and a longer fluorescence lifetime, which are attributed to the electrostatic interaction of Ru(bpy)(3)(2+) and silica. Because silica nanoparticles are used as immobilization matrices, the surfaces of Ru-silica nanoparticles are easily modified or functionalized via the assembly of other nanoparticles, such as Au. For ECL detection, Au-colloid-modified Ru-silica nanoparticles are immobilized on a 3-mercaptopropyl-trimethoxysilane-modified indium tin oxide electrode surface by Au-S interaction; the surface concentration of electroactive Ru(bpy)(3)Cl-2 is obviously higher than that in silica films.
Resumo:
Based on electrogenerated chemiluminescence (ECL), a novel method for fabrication of alcohol dehydrogenase (ADH) biosensor by self-assembling ADH to Ru(bpy)(3)(2+) -AuNPs aggregates (Ru-AuNPs) on indium tin oxide (ITO) electrode surface has been developed. Positively charged Ru(bpy)(3)(2+) could be immobilized stably on the electrode surface with negatively charged AuNPs in the form of aggregate via electrostatic interaction. On the other hand, AuNPs are favourable candidates for the immobilization of enzymes because amine groups and cysteine residues in the enzymes are known to bind strongly with AuNPs. Moreover, AuNPs can act as tiny conduction centers to facilitate the transfer of electrons. Such biosensor combined enzymatic selectivity with the sensitivity of ECL detection for quantification of enzyme substrate, and it displayed wide linear range, high sensitivity and good stability.
Resumo:
The synthesis and photophysical studies of several multifunctional phosphorescent iridium(III) cyclometalated complexes consisting of the hole-transporting carbazole and fluorene-based 2-phenylpyridine moieties are reported. All of them are isolated as thermally and morphological stable amorphous solids. Extension of the pi-conjugation through incorporation of electron- pushing carbazole units to the fluorene fragment leads to bathochromic shifts in the emission profile, increases the highest oc- cupied molecular orbital levels and improves the charge balance in the resulting complexes because of the propensity of the carbazole unit to facilitate hole transport. These iridium-based triplet emitters give a strong orange phosphorescence light at room temperature with relatively short lifetimes in the solution phase. The photo- and electroluminescence properties of these phosphorescent carbazolylfluorene-functionalized metalated complexes have been studied in terms of the coordinating position of carbazole to the fluorene unit. Organic light-emitting diodes (OLEDs) using these complexes as the solution-processed emissive layers have been fabricated which show very high efficiencies even without the need for the typical hole-transporting layer.I These orange-emitting devices can produce a maximum current efficiency of similar to 30 cd A(-1) corresponding to an external quantum efficiency of similar to 10 % ph/el (photons per electron) and a power efficiency of similar to 14 Im W-1.
Resumo:
A new technique for investigating drug-protein binding was developed employing capillary electrophoresis (CE) coupled with tris(2,2'-bipyridyl) ruthenium(II) [Ru(bPY)(3)(2+)] electrochemiluminescence (ECL) (CE-ECL) detection after equilibrium dialysis. Three basic drugs, namely pridinol, procyclidine and its analogue trihexyphenidyl, were successfully separated by capillary zone electrophoresis with end-column Ru(bPY)(3)(2+) ECL detection. The relative drug binding to human serum albumin (HSA) for each single drug as well'as for the three drugs binding simultaneously was calculated. It was found that the three antiparkinsonian drugs compete for the same binding site on HSA. This work demonstrated that Ru(bPY)(3)(2+) CE-ECL can be a suitable technique for studying drug-protein binding.
Resumo:
A capillary zone electrophoresis with end-column electrochemiluminescence (ECL) detector was described for the determination of benzhexol hydrochloride. The detection was based on the tris(2,2'-bypyridine)ruthenium(II) [Ru(bpy)(3)(2+)] ECL reaction with the analyte. Electrophoresis was performed using a 25 mum i.d. uncoated capillary. 10 mM sodium phosphate buffer (pH=8.0) was used as the running buffer. The solution in the detection cell was 80 mM sodium phosphate (pH=8.0) and 5 mM)21 Ru(bpy)(3)(2+). A linear calibration curve of three-orders of magnitude was obtained (with a correlation coefficient of > 0.999) from 1.0X10(-8) to 1.0X10(-5) M and the limit of detection was 6.7 X 10(-9) M (S/N= 3). This just provides an easy and sensitive method to determine the active ingredient in pharmaceutical formulations.
Resumo:
The electrochemistry and electrogenerated chemiluminescence (ECL) of ruthenium(II) tris(bipyridine) (Ru(bpy)(3)(2+)) ion-exchanged in carbon nanotube (CNT)/Nafion composite films were investigated with tripropylamine (TPA) as a coreactant at a glassy carbon (GC) electrode. The major goal of this work was to investigate and develop new materials and immobilization approaches for the fabrication of ECL-based sensors with improved sensitivity, reactivity, and long-term stability. Ru(bpy)(3)(2+) could be strongly incorporated into Nafion film, but the rate of charge transfer was relative slow and its stability was also problematic. The interfusion of CNT in Nafion resulted in a high peak current of Ru(bpy)(3)(2+) and high ECL intensity. The results indicated that the composite film had more open structures and a larger surface area allowing faster diffusion of Ru(bpy)(3)(2+) and that the CNT could adsorb Ru(bpy)(3)(2+) and also acted as conducting pathways to connect Ru(bpy)(3)(2+) sites to the electrode. In the present work, the sensitivity of the ECL system at the CNT/Nafion film-modified electrodes was more than 2 orders of magnitude higher than that observed at a silica/Nafion composite film-modified electrode and 3 orders of magnitude higher than that at pure Nafion films.
Resumo:
The facile synthesis of the novel platinum nanoparticles/Eastman AQ55D/ruthenium(II) tris( bipyridine) (PtNPs/ AQ/Ru(bpy)(3)(2+)) colloidal material for ultrasensitive ECL solid-state sensors was reported for the first time. The cation ion-exchanger AQ was used not only to immobilize ECL active species Ru(bpy)(3)(2+) but also as the dispersant of PtNPs. Colloidal characterization was accomplished by transmission electron microscopy (TEM), X-ray photoelectron spectrum (XPS), and UV-vis spectroscopy. Directly coating the as-prepared colloid on the surface of a glassy carbon electrode produces an electrochemiluminescence (ECL) sensor. The electronic conductivity and electroactivity of PtNPs in composite film made the sensor exhibit faster electron transfer, higher ECL intensity of Ru(bpy)(3)(2+), and a shorter equilibration time than Ru(bpy)(3)(2+) immobilized in pure AQ film. Furthermore, it was demonstrated that the combination of PtNPs and permselective cation exchanger made the sensor exhibite excellent ECL behavior and stability and a very low limit of detection (1 x 10(-15) M) of tripropylamine with application prospects in bioanalysis. This method was very simple, effective, and low cost.
Resumo:
A new sensitive assay for aspartate aminotransterase (AST) and alanine aminotransferase (ALT) activities in biofluids was developed, based on the separation and detection of alanine, glutamate, and aspartate using capillary electrophoresis (CE) with electrochemiluminescence (ECL) detection. The three amino acids were separated in 5 mM phosphate of pH 2.1 as background electrolyte, and detected on a 500 mu m platinum disk electrode at 1.2 V (versus Ag/AgCl) in the presence of 10 mM tris(2,2'-bipyridyl)ruthenium(II) dissolved in 80 mM phosphate of pH 10.5. A mass detection limit of 37.3 fmol (or 81.5 fmol) for glutamate, corresponding to the product in the enzyme reaction catalyzed by 1.24 x 10(-9) U AST (or 2.72 x 10(-9) U ALT) in a 30 min reaction period, was achieved. This assay was applied to investigate the cytotoxicity effect of ethanol on HepG2 cells and differentiating nonalcoholic steatohepatitis (NASH) from alcoholic liver disease, indicating that the technique is promising for the application in the cell biological and clinical fields.
Resumo:
Capillary electrophoresis (CE) with Ru(bpy)(3)(2+) electrochemiluminescence. (ECL) detection system was established to the determination of contamination of banknotes with controlled drugs and a high efficiency on-column field-amplified sample stacking (FASS) technique was also optimized to increase the ECL intensity. The method was illustrated using heroin and cocaine, which are two typical and popular illicit drugs. Highest sample stacking was obtained when 0.01 mM acetic acid was chosen for sample dissolution with electrokinetical injection for 6 s at 17 kV. Under the optimized conditions: ECL detection at 1.2 V, separation voltage 10.0 kV, 20 mM phosphate-acetate (pH 7.2) as running buffer, 5 mM Ru(bpy)(3)(2+) with 50 mM phosphate-acetate (pH 7.2) in the detection cell, the standard curves were linear in the range of 7.50 x 10(-8) to 1.00 x 10(-5) M for heroin and 2.50 x 10(-7) to 1.00 x 10(-4) M for cocaine and detection limits of 50 nM for heroin and 60 nM for cocaine were achieved (S/N = 3), respectively. Relative standard derivations of the ECL intensity and the migration time were 3.50 and 0.51% for heroin and 4.44 and 0.12% for cocaine, respectively.The developed method was successfully applied to the determination of heroin and cocaine on illicit drug contaminated banknotes without any damage of the paper currency.
Resumo:
The electrochemistry and electrogenerated chemilurninescence (ECL) of tris(2,2-bipyridyl)ruthenium(II) ion-exchanged in Eastman-AQ-carbon nanotube (CNT) composite films were investigated at a glassy carbon (GC) electrode. Eastman-AQ55D is a poly (ester sulfonic acid) cation exchanger available in a commercial dissolved form. It is much more hydrophilic than Nafion due to its unique structure, so Ru(bpy)(3)(2+) does not diffuse into the hydrophobic region where it may lose its electroactivity as that in Nafion. The interfused CNT could act as electronic wires that connect the electrode with Ru(bpy)(3)(2+), which made the composite film much more electronically which finally led to the increasing of Ru(bpy)(3)(2+) conductive. Besides, the negatively charged CNT could also absorb some Ru(bpy)(3)(2+). Moreover, the strong electrostatic interaction between AQ and Ru(bpy)(3)(2+) made the composite films much more stable. The combination of AQ and CNT brings excellent sensitivity with the detection limit as low as 3 x 10(-11) M for TPA.