968 resultados para Road traffic noise
Resumo:
Not only are we excited that Team Archaeology is back for our third ride, we are energized to be part of a “Human and Natural History” partnership that allows us expanded opportunities to share the story of Iowa’s amazing past. Once again there will be archaeologists along for the ride, as well as at Expo and this year at roadside locations Day One, Five and Six. Don’t hesitate to ask about the history of the first people to travel this landscape as well as the stories of each generation that has contributed to what we know of ourselves today. We will also feature information about the landscape and natural resources of Iowa you will encounter along the route through our partnering colleagues specializing in geology, hydrology, and other earth sciences. Enjoy using this booklet as your guide to the week’s activities and please help yourself to free materials from our outreach booth about our shared past and the natural world we depend on. Ride smart, be safe, and when you get home, be sure to tell your friends and neighbors about Iowa archaeology!
Resumo:
The clathrin assembly lymphoid myeloid leukemia (CALM) gene encodes a putative homologue of the clathrin assembly synaptic protein AP180. Hence the biochemical properties, the subcellular localization, and the role in endocytosis of a CALM protein were studied. In vitro binding and coimmunoprecipitation demonstrated that the clathrin heavy chain is the major binding partner of CALM. The bulk of cellular CALM was associated with the membrane fractions of the cell and localized to clathrin-coated areas of the plasma membrane. In the membrane fraction, CALM was present at near stoichiometric amounts relative to clathrin. To perform structure-function analysis of CALM, we engineered chimeric fusion proteins of CALM and its fragments with the green fluorescent protein (GFP). GFP-CALM was targeted to the plasma membrane-coated pits and also found colocalized with clathrin in the Golgi area. High levels of expression of GFP-CALM or its fragments with clathrin-binding activity inhibited the endocytosis of transferrin and epidermal growth factor receptors and altered the steady-state distribution of the mannose-6-phosphate receptor in the cell. In addition, GFP-CALM overexpression caused the loss of clathrin accumulation in the trans-Golgi network area, whereas the localization of the clathrin adaptor protein complex 1 in the trans-Golgi network remained unaffected. The ability of the GFP-tagged fragments of CALM to affect clathrin-mediated processes correlated with the targeting of the fragments to clathrin-coated areas and their clathrin-binding capacities. Clathrin-CALM interaction seems to be regulated by multiple contact interfaces. The C-terminal part of CALM binds clathrin heavy chain, although the full-length protein exhibited maximal ability for interaction. Altogether, the data suggest that CALM is an important component of coated pit internalization machinery, possibly involved in the regulation of clathrin recruitment to the membrane and/or the formation of the coated pit.
Resumo:
Team Archaeology is back for a second year to share the history of Iowa with the riders and supporters of RAGBRAI.
Resumo:
During timber exploitation in forest stands harvesting machines pass repeatedly along the same track and can cause soil compaction, which leads to soil erosion and restricted tree root growth. The level of soil compaction depends on the number of passes and weight of the wood load. This paper aimed to evaluate soil compaction and eucalyptus growth as affected by the number of passes and wood load of a forwarder. The study was carried out in Santa Maria de Itabira county, Minas Gerais State - Brazil, on a seven-year-old eucalyptus stand planted on an Oxisol. The trees were felled by chainsaw and manually removed. Plots of 144 m² (four rows 12 m long in a 3 x 2 m spacing) were then marked off for the conduction of two trials. The first tested the traffic intensity of a forwarder which weighed 11,900 kg and carried 12 m³ wood (density of 480 kg m-3) and passed 2, 4, and 8 times along the same track. In the second trial, the forwarder carried loads of 4, 8, and 12 m³ of wood, and the machine was driven four times along the same track. In each plot, the passes affected four rows. Eucalyptus was planted in 30 x 30 x 30 cm holes on the compacted tracks. The soil in the area is clayey (470 clay and 440 g kg-1 sand content) and at depths of 0-5 cm and 5-10 cm, respectively, soil organic carbon was 406 and 272 g kg-1 and the moisture content during the trial 248 and 249 g kg-1. These layers were assessed for soil bulk density and water-stable aggregates. The infiltration rate was measured by a cylinder infiltrometer. After 441 days the measurements were repeated, with additional analyses of: soil organic carbon, total nitrogen, N-NH4+, N-NO3-, porosity, and penetration resistance. Tree height, stem diameter, and stem dry matter were measured. Forwarder traffic increased soil compaction, resistance to penetration and microporosity while it reduced the geometric mean diameter, total porosity, macroporosity and infiltration rate. Stem dry matter yield and tree height were not affected by soil compaction. Two passes of the forwarder were enough to cause the disturbances at the highest levels. The compaction effects were still persistent 441 days after forwarder traffic.
Resumo:
We give a theoretical interpretation of the noise properties of Schottky barrier diodes based on the role played by the long range Coulomb interaction. We show that at low bias Schottky diodes display shot noise because the presence of the depletion layer makes the effects of the Coulomb interaction negligible on the current fluctuations. When the device passes from barrier to flat band conditions, the Coulomb interaction becomes active, thus introducing correlation between different current fluctuations. Therefore, the crossover between shot and thermal noise represents the suppression due to long range Coulomb interaction of the otherwise full shot noise. Similar ideas can be used to interpret the noise properties of other semiconductor devices.
Resumo:
We carry out a self-consistent analytical theory of unipolar current and noise properties of metal-semiconductor-metal structures made of highly resistive semiconductors in the presence of an applied bias of arbitrary strength. By including the effects of the diffusion current we succeed in studying the whole range of carrier injection conditions going from low level injection, where the structure behaves as a linear resistor, to high level injection, where the structure behaves as a space charge limited diode. We show that these structures display shot noise at the highest voltages. Remarkably the crossover from Nyquist noise to shot noise exhibits a complicated behavior with increasing current where an initial square root dependence (double thermal noise) is followed by a cubic power law.
Resumo:
The gated operation is proposed as an effective method to reduce the noise in pixel detectors based on Geiger mode avalanche photodiodes. A prototype with the sensor and the front-end electronics monolithically integrated has been fabricated with a conventional HV-CMOS process. Experimental results demonstrate the increase of the dynamic range of the sensor by applying this technique.
Resumo:
Avalanche photodiodes operated in the Geiger mode offer a high intrinsic gain as well as an excellent timing accuracy. These qualities make the sensor specially suitable for those applications where detectors with high sensitivity and low timing uncertainty are required. Moreover, they are compatible with standard CMOS technologies, allowing sensor and front-end electronics integration within the pixel cell. However, the sensor suffers from high levels of intrinsic noise, which may lead to erroneous results and limit the range of detectable signals. They also increase the amount of data that has to be stored. In this work, we present a pixel based on a Geiger-mode avalanche photodiode operated in the gated mode to reduce the probability to detect noise counts interfering with photon arrival events. The readout circuit is based on a two grounds scheme to enable low reverse bias overvoltages and consequently lessen the dark count rate. Experimental characterization of the fabricated pixel with the HV-AMS 0.35µm standard technology is also presented in this article.
Resumo:
We predict the existence of an anomalous crossover between thermal and shot noise in macroscopic diffusive conductors. We first show that, besides thermal noise, these systems may also exhibit shot noise due to fluctuations of the total number of carriers in the system. Then we show that at increasing currents the crossover between the two noise behaviors is anomalous, in the sense that the low-frequency current spectral density displays a region with a superlinear dependence on the current up to a cubic law. The anomaly is due to the nontrivial coupling in the presence of the long-range Coulomb interaction among the three time scales relevant to the phenomenon, namely, diffusion, transit, and dielectric relaxation time.
Resumo:
We work out a semiclassical theory of shot noise in ballistic n+-i-n+ semiconductor structures aiming at studying two fundamental physical correlations coming from Pauli exclusion principle and long-range Coulomb interaction. The theory provides a unifying scheme which, in addition to the current-voltage characteristics, describes the suppression of shot noise due to Pauli and Coulomb correlations in the whole range of system parameters and applied bias. The whole scenario is summarized by a phase diagram in the plane of two dimensionless variables related to the sample length and contact chemical potential. Here different regions of physical interest can be identified where only Coulomb or only Pauli correlations are active, or where both are present with different relevance. The predictions of the theory are proven to be fully corroborated by Monte Carlo simulations.
Resumo:
We present a theoretical investigation of shot-noise properties in nondegenerate elastic diffusive conductors. Both Monte Carlo simulations and analytical approaches are used. Two interesting phenomena are found: (i) the display of enhanced shot noise for given energy dependences of the scattering time, and (ii) the recovery of full shot noise for asymptotic high applied bias. The first phenomenon is associated with the onset of negative differential conductivity in energy space that drives the system towards a dynamical electrical instability in excellent agreement with analytical predictions. The enhancement is found to be strongly amplified when the dimensionality in momentum space is lowered from three to two dimensions. The second phenomenon is due to the suppression of the effects of long-range Coulomb correlations that takes place when the transit time becomes the shortest time scale in the system, and is common to both elastic and inelastic nondegenerate diffusive conductors. These phenomena shed different light in the understanding of the anomalous behavior of shot noise in mesoscopic conductors, which is a signature of correlations among different current pulses.
Resumo:
Within a drift-diffusion model we investigate the role of the self-consistent electric field in determining the impedance field of a macroscopic Ohmic (linear) resistor made by a compensated semi-insulating semiconductor at arbitrary values of the applied voltage. The presence of long-range Coulomb correlations is found to be responsible for a reshaping of the spatial profile of the impedance field. This reshaping gives a null contribution to the macroscopic impedance but modifies essentially the transition from thermal to shot noise of a macroscopic linear resistor. Theoretical calculations explain a set of noise experiments carried out in semi-insulating CdZnTe detectors.
Resumo:
We report on direct experimental evidence of shot noise in a linear macroscopic resistor. The origin of the shot noise comes from the fluctuation of the total number of charge carriers inside the resistor associated with their diffusive motion under the condition that the dielectric relaxation time becomes longer than the dynamic transit time. The present results show that neither potential barriers nor the absence of inelastic scattering are necessary to observe shot noise in electronic devices.