889 resultados para RETINAL DYSTROPHIES
Resumo:
Melanopsin containing intrinsically photosensitive Retinal Ganglion cells (ipRGCs) mediate the pupil light reflex (PLR) during light onset and at light offset (the post-illumination pupil response, PIPR). Recent evidence shows that the PLR and PIPR can provide non-invasive, objective markers of age-related retinal and optic nerve disease, however there is no consensus on the effects of healthy ageing or refractive error on the ipRGC mediated pupil function. Here we isolated melanopsin contributions to the pupil control pathway in 59 human participants with no ocular pathology across a range of ages and refractive errors. We show that there is no effect of age or refractive error on ipRGC inputs to the human pupil control pathway. The stability of the ipRGC mediated pupil response across the human lifespan provides a functional correlate of their robustness observed during ageing in rodent models.
Resumo:
Purpose Melanopsin-expressing retinal ganglion cells (mRGCs) have non-image forming functions including mediation of the pupil light reflex (PLR). There is limited knowledge about mRGC function in retinal disease. Initial retinal changes in age-related macular degeneration (AMD) occur in the paracentral region where mRGCs have their highest density, making them vulnerable during disease onset. In this cross-sectional clinical study, we measured the PLR to determine if mRGC function is altered in early stages of macular degeneration. Methods Pupil responses were measured in 8 early AMD patients (AREDS 2001 classification; mean age 72.6 ± 7.2 years, 5M, and 3F) and 12 healthy control participants (mean age 66.6 ± 6.1 years, 8M and 4F) using a custom-built Maxwellian-view pupillometer. Stimuli were 0.5 Hz sinewaves (10 s duration, 35.6° diameter) of short wavelength light (464nm, blue; retinal irradiance = 14.5 log quanta.cm-2.s-1) to produce high melanopsin excitation and of long wavelength light (638nm, red; retinal irradiance = 14.9 log quanta.cm-2.s-1), to bias activation to outer retina and provide a control. Baseline pupil diameter was determined during a 10 s pre-stimulus period. The post illumination pupil response (PIPR) was recorded for 40 s. The 6 s PIPR and maximum pupil constriction were expressed as percentage baseline (M ± SD). Results The blue PIPR was significantly less sustained (p<0.01) in the early AMD group (75.49 ± 7.88%) than the control group (58.28 ± 9.05%). The red PIPR was not significantly different (p>0.05) between the early AMD (84.79 ± 4.03%) and control groups (82.01 ± 5.86%). Maximum constriction amplitude in the early AMD group for blue (43.67 ± 6.35%) and red (48.64 ± 6.49%) stimuli were not significantly different to the control group for blue (39.94 ± 3.66%) and red (44.98 ± 3.15%) stimuli (p>0.05). Conclusions These results are suggestive of inner retinal mRGC deficits in early AMD. This non-invasive, objective measure of pupil responses may provide a new method for quantifying mRGC function and monitoring AMD progression.
Resumo:
Modern drug discovery gives rise to a great number of potential new therapeutic agents, but in some cases the efficient treatment of patient may not be achieved because the delivery of active compounds to the target site is insufficient. Thus, drug delivery is one of the major challenges in current pharmaceutical research. Numerous nanoparticle-based drug carriers, e.g. liposomes, have been developed for enhanced drug delivery and targeting. Drug targeting may enhance the efficiency of the treatment and, importantly, reduce unwanted side effects by decreasing drug distribution to non-target tissues. Liposomes are biocompatible lipid-based carriers that have been studied for drug delivery during the last 40 years. They can be functionalized with targeting ligands and sensing materials for triggered activation. In this study, various external signal-assisted liposomal delivery systems were developed. Signals can be used to modulate drug permeation or release from the liposome formulation, and they provide accurate control of time, place and rate of activation. The study involved three types of signals that were used to trigger drug permeation and release: electricity, heat and light. Electrical stimulus was utilized to enhance the permeation of liposomal DNA across the skin. Liposome/DNA complex-mediated transfections were performed in tight rat epidermal cell model. Various transfection media and current intensities were tested, and transfection efficiency was evaluated non-invasively by monitoring the concentration of secreted reporter protein in cell culture medium. Liposome/DNA complexes produced gene expression, but electrical stimulus did not enhance the transfection efficiency significantly. Heat-sensitive liposomal drug delivery system was developed by coating liposomes with biodegradable and thermosensitive poly(N-(2-hydroxypropyl) methacrylamide-mono/dilactate polymer. Temperature-triggered liposome aggregation and contents release from liposomes were evaluated. The cloud point temperature (CP) of the polymer was set to 42 °C. Polymer-coated liposome aggregation and contents release were observed above CP of the polymer, while non-coated liposomes remained intact. Polymer precipitates above its CP and interacts with liposomal bilayers. It is likely that this induces permeabilization of the liposomal membrane and contents release. Light-sensitivity was introduced to liposomes by incorporation of small (< 5 nm) gold nanoparticles. Hydrophobic and hydrophilic gold nanoparticles were embedded in thermosensitive liposomes, and contents release was investigated upon UV light exposure. UV light-induced lipid phase transitions were examined with small angle X-ray scattering, and light-triggered contents release was shown also in human retinal pigment epithelial cell line. Gold nanoparticles absorb light energy and transfer it into heat, which induces phase transitions in liposomes and triggers the contents release. In conclusion, external signal-activated liposomes offer an advanced platform for numerous applications in drug delivery, particularly in the localized drug delivery. Drug release may be localized to the target site with triggering stimulus that results in better therapeutic response and less adverse effects. Triggering signal and mechanism of activation can be selected according to a specific application.
Resumo:
Purpose To provide a summary of the classic paper "Differences in the accommodation stimulus response curves of adult myopes and emmetropes" published in Ophthalmic and Physiological Optics in 1998 and to provide an update on the topic of accommodation errors in myopia. Summary The accommodation responses of 33 participants (10 emmetropes, 11 early onset myopes and 12 late onset myopes) aged 18-31 years were measured using the Canon Autoref R-1 free space autorefractor using three methods to vary the accommodation demand: decreasing distance (4 m to 0.25 cm), negative lenses (0 to -4 D at 4 m) and positive lenses (+4 to 0 D at 0.25 m). We observed that the greatest accommodation errors occurred for the negative lens method whereas minimal errors were observed using positive lenses. Adult progressing myopes had greater lags of accommodation than stable myopes at higher demands induced by negative lenses. Progressing myopes had shallower response gradients than the emmetropes and stable myopes; however the reduced gradient was much less than that observed in children using similar methods. Recent Findings This paper has been often cited as evidence that accommodation responses at near may be primarily reduced in adults with progressing myopia and not in stable myopes and/or that challenging accommodation stimuli (negative lenses with monocular viewing) are required to generate larger accommodation errors. As an analogy, animals reared with hyperopic errors develop axial elongation and myopia. Retinal defocus signals are presumably passed to the retinal pigment epithelium and choroid and then ultimately the sclera to modify eye length. A number of lens treatments that act to slow myopia progression may partially work through reducing accommodation errors.
Resumo:
Purpose: Gamma-aminobutyric acid A (GABAA) receptors (GABAARs), which are ionotropic receptors involving chloride channels, have been identified in various neural (e.g., mouse retinal ganglion cells) and nonneural cells (e.g., mouse lens epithelial cells) regulating the intracellular calcium concentration ([Ca(2+)]i). GABAAR β-subunit protein has been isolated in the cultured human and rat RPE, and GABAAα1 and GABAAρ1 mRNAs and proteins are present in the chick RPE. The purpose of this study was to investigate the expression of GABAAα1 and GABAAρ1, two important subunits in forming functional GABAARs, in the cultured human RPE, and further to explore whether altering receptor activation modifies [Ca(2+)]i. Methods: Human RPE cells were separately cultured from five donor eye cups. Real-time PCR, western blots, and immunofluorescence were used to test for GABAAα1 and GABAAρ1 mRNAs and proteins. The effects of the GABAAR agonist muscimol, antagonist picrotoxin, or the specific GABAAρ antagonist 1,2,5,6-tetrahydropyridin-4-yl) methylphosphinic acid (TPMPA) on [Ca(2+)]i in cultured human RPE were demonstrated using Fluo3-AM. Results: Both GABAAα1 and GABAAρ1 mRNAs and proteins were identified in cultured human RPE cells; antibody staining was mainly localized to the cell membrane and was also present in the cytoplasm but not in the nucleus. Muscimol (100 μM) caused a transient increase of the [Ca(2+)]i in RPE cells regardless of whether Ca(2+) was added to the buffer. Muscimol-induced increases in the [Ca(2+)]i were inhibited by pretreatment with picrotoxin (300 μM) or TPMPA (500 μM). Conclusions: GABAAα1 and GABAAρ1 are expressed in cultured human RPE cells, and GABAA agents can modify [Ca(2+)]i.
Resumo:
In visual search one tries to find the currently relevant item among other, irrelevant items. In the present study, visual search performance for complex objects (characters, faces, computer icons and words) was investigated, and the contribution of different stimulus properties, such as luminance contrast between characters and background, set size, stimulus size, colour contrast, spatial frequency, and stimulus layout were investigated. Subjects were required to search for a target object among distracter objects in two-dimensional stimulus arrays. The outcome measure was threshold search time, that is, the presentation duration of the stimulus array required by the subject to find the target with a certain probability. It reflects the time used for visual processing separated from the time used for decision making and manual reactions. The duration of stimulus presentation was controlled by an adaptive staircase method. The number and duration of eye fixations, saccade amplitude, and perceptual span, i.e., the number of items that can be processed during a single fixation, were measured. It was found that search performance was correlated with the number of fixations needed to find the target. Search time and the number of fixations increased with increasing stimulus set size. On the other hand, several complex objects could be processed during a single fixation, i.e., within the perceptual span. Search time and the number of fixations depended on object type as well as luminance contrast. The size of the perceptual span was smaller for more complex objects, and decreased with decreasing luminance contrast within object type, especially for very low contrasts. In addition, the size and shape of perceptual span explained the changes in search performance for different stimulus layouts in word search. Perceptual span was scale invariant for a 16-fold range of stimulus sizes, i.e., the number of items processed during a single fixation was independent of retinal stimulus size or viewing distance. It is suggested that saccadic visual search consists of both serial (eye movements) and parallel (processing within perceptual span) components, and that the size of the perceptual span may explain the effectiveness of saccadic search in different stimulus conditions. Further, low-level visual factors, such as the anatomical structure of the retina, peripheral stimulus visibility and resolution requirements for the identification of different object types are proposed to constrain the size of the perceptual span, and thus, limit visual search performance. Similar methods were used in a clinical study to characterise the visual search performance and eye movements of neurological patients with chronic solvent-induced encephalopathy (CSE). In addition, the data about the effects of different stimulus properties on visual search in normal subjects were presented as simple practical guidelines, so that the limits of human visual perception could be taken into account in the design of user interfaces.
Resumo:
Glaucoma is a multifactorial long-term ocular neuropathy associated with progressive loss of the visual field, retinal nerve fiber structural abnormalities and optic disc changes. Like arterial hypertension it is usually a symptomless disease, but if left untreated leads to visual disability and eventual blindness. All therapies currently used aim to lower intraocular pressure (IOP) in order to minimize cell death. Drugs with new mechanisms of action could protect glaucomatous eyes against blindness. Renin-angiotensin system (RAS) is known to regulate systemic blood pressure and compounds acting on it are in wide clinical use in the treatment of hypertension and heart failure but not yet in ophthalmological use. There are only few previous studies concerning intraocular RAS, though evidence is accumulating that drugs antagonizing RAS can also lower IOP, the only treatable risk factor in glaucoma. The main aim of this experimental study was to clarify the expression of the renin-angiotensin system in the eye tissues and to test its potential oculohypotensive effects and mechanisms. In addition, the possible relationship between the development of hypertension and IOP was evaluated in animal models. In conclusion, a novel angiotensin receptor type (Mas), as well as ACE2 enzyme- producing agonists for Mas, were described for the first time in the eye structures participating in the regulation of IOP. In addition, a Mas receptor agonist significantly reduced even normal IOP. The effect was abolished by a specific receptor antagonist. Intraocular, local RAS would thus to be involved in the regulation of IOP, probably even more in pathological conditions such as glaucoma though there was no unambiguous relationship between arterial and ocular hypertension. The findings suggest the potential as antiglaucomatous drugs of agents which increase ACE2 activity and the formation of angiotensin (1-7), or activate Mas receptors.
Resumo:
Glaucoma is the second leading cause of blindness worldwide. It is a group of optic neuropathies, characterized by progressive optic nerve degeneration, excavation of the optic disc due to apoptosis of retinal ganglion cells and corresponding visual field defects. Open angle glaucoma (OAG) is a subtype of glaucoma, classified according to the age of onset into juvenile and adult- forms with a cut-off point of 40 years of age. The prevalence of OAG is 1-2% of the population over 40 years and increases with age. During the last decade several candidate loci and three candidate genes, myocilin (MYOC), optineurin (OPTN) and WD40-repeat 36 (WDR36), for OAG have been identified. Exfoliation syndrome (XFS), age, elevated intraocular pressure and genetic predisposition are known risk factors for OAG. XFS is characterized by accumulation of grayish scales of fibrillogranular extracellular material in the anterior segment of the eye. XFS is overall the most common identifiable cause of glaucoma (exfoliation glaucoma, XFG). In the past year, three single nucleotide polymorphisms (SNPs) on the lysyl oxidase like 1 (LOXL1) gene have been associated with XFS and XFG in several populations. This thesis describes the first molecular genetic studies of OAG and XFS/XFG in the Finnish population. The role of the MYOC and OPTN genes and fourteen candidate loci was investigated in eight Finnish glaucoma families. Both candidate genes and loci were excluded in families, further confirming the heterogeneous nature of OAG. To investigate the genetic basis of glaucoma in a large Finnish family with juvenile and adult onset OAG, we analysed the MYOC gene in family members. Glaucoma associated mutation (Thr377Met) was identified in the MYOC gene segregating with the disease in the family. This finding has great significance for the family and encourages investigating the MYOC gene also in other Finnish OAG families. In order to identify the genetic susceptibility loci for XFS, we carried out a genome-wide scan in the extended Finnish XFS family. This scan produced promising candidate locus on chromosomal region 18q12.1-21.33 and several additional putative susceptibility loci for XFS. This locus on chromosome 18 provides a solid starting point for the fine-scale mapping studies, which are needed to identify variants conferring susceptibility to XFS in the region. A case-control and family-based association study and family-based linkage study was performed to evaluate whether SNPs in the LOXL1 gene contain a risk for XFS, XFG or POAG in the Finnish patients. A significant association between the LOXL1 gene SNPs and XFS and XFG was confirmed in the Finnish population. However, no association was detected with POAG. Probably also other genetic and environmental factors are involved in the pathogenesis of XFS and XFG.
Resumo:
Neuronal ceroid lipofuscinoses (NCLs) are a family of inherited pediatric neurodegenerative disorders, leading to retinal degeneration, death of selective neuronal populations and accumulation of autofluorscent ceroid-lipopigments. The clinical manifestations are generally similar in all forms. The Finnish variant late infantile neuronal ceroid lipofuscinosis (vLINCLFin) is a form of NCL, especially enriched in the Finnish population. The aim of this thesis was to analyse the brain pathology of vLINCLFin utilising the novel Cln5-/- mouse model. Gene expression profiling of the brains of already symptomatic Cln5-/- mice revealed that inflammation, neurodegeneration and defects in myelinization are the major characteristics of the later stages of the disease. Histological characterization of the brain pathology confirmed that the thalamocortical system is affected in Cln5-/- mice, similarly to the other NCL mouse models. However, whereas the brain pathology in all other analyzed NCL mice initiate in the thalamus and spread only months later to the cortex, we observed that the sequence of events is uniquely reversed in Cln5-/- mice; beginning in the cortex and spreading to the thalamus only months later. We could also show that even though neurodegeneration is inititated in the cortex, reactive gliosis and loss of myelin are evident in specific nuclei of the thalamus already in the 1 month old brain. To obtain a deeper insight into the disturbed metabolic pathways, we performed gene expression profiling of presymptomatic mouse brains. We validated these findings with immunohistological analyses, and could show that cytoskeleton and myelin were affected in Cln5-/- mice. Comparison of gene expression profiling results of Cln5-/- and Cln1-/- mice, further highlighted that these two NCL models share a common defective pathway, leading to disturbances in the neuronal growth cone and cytoskeleton. Encouraged by the evidence of this defected pathway, we analyzed the molecular interactions of NCL-proteins and observed that Cln5 and Cln1/Ppt1 proteins interact with each other. Furthermore, we demonstrated that Cln5 and Cln1/Ppt1 share an interaction partner, the F1-ATP synthase, potentially linking both vLINCLFIN and INCL diseases to disturbed lipid metabolism. In addition, Cln5 was shown to interact with other NCL proteins; Cln2, Cln3, Cln6 and Cln8, implicating a central role for Cln5 in the NCL pathophysiology. This study is the first to describe the brain pathology and gene expression changes in the Cln5-/- mouse. Together the findings presented in this thesis represent novel information of the disease processes and the molecular mechanisms behind vLINCLFin and have highlighted that vLINCLFin forms a very important model to analyze the pathophysiology of NCL diseases.
Resumo:
1. 1.|Carotene 15,15′-dioxygenase (EC 1.13.11.21) has been isolated from the intestine of guinea pig and rabbit and purified 38- and 30-fold, respectively, but subjecting the intestinal homogenate to protamine sulfate treatment, (NH4)2SO4 fractionation and acetone precipitation. 2. 2.|The guinea pig enzyme showed a pH optimum at 8.5, an optimum substrate concentration of 200 nmoles of β,β-carotene per 25 ml of reaction mixture, an apparent Km with β,β-carotene as substrate of 9.5 · 10−6 M and a V 3.3 nmoles of retinal formation/mg protein per h. The reaction was linear upto 3 h and the reaction rate increased linearly with increase in enzyme protein concentration. The enzyme was activated by GSH and Fe2+ and inhibited by sodium dodecylsulfate, sulfhydryl binding and iron chelating agents. 3. 3.|The reaction catalysed by guinea pig enzyme was strictly stoichiometric. 4. 4.|Rabbit enzyme showed a close similarity with guinea pig enzyme with respect to time course, optimum substrate concentration, activation by Fe2+ and GSH, inhibition by sodium dodecylsulfate, iron chelating and sulfhydryl binding agents. However, it showed a slightly lower pH optimum (pH 7.8). 5. 5.|The enzyme from guinea pig and rabbit showed remarkable similarity with respect to cleavage of carotenoids. The enzyme from both the species was more specific for β,β-carotene but could also cleave a number of other carotenoids at the 15,15′-double bond. 6. 6.|10′-Apo-β-carotenal and 10′-apo-β-carotenol were readily cleaved compared with other apo-β-carotenals and apo-β-carotenols tested. 7. 7.|It has been conclusively shown for the first time that mono-ring substituted carotenoids are also cleaved at the 15,15′-double bond.
Resumo:
. The changes in the net amounts of retinol, retinyl esters and retinal in both the developing chick embryo and the newly hatched chick were investigated. The embryo requires about 68nmol of the vitamin for its growth, whereas the baby chick requires about 108nmol during the first 7 days after hatching. 2. Retinal was present in the egg in fairly high concentrations at the beginning of the incubation but it virtually disappeared from the extra-embryonic tissue after day 17 of incubation. It was not found in the liver of the embryo or of the newly hatched chick up until day 7.
Resumo:
1. 1.|Carotene 15,15′-dioxygenase (EC 1.13.11.21) has been isolated from the intestine of guinea pig and rabbit and purified 38- and 30-fold, respectively, but subjecting the intestinal homogenate to protamine sulfate treatment, (NH4)2SO4 fractionation and acetone precipitation. 2. 2.|The guinea pig enzyme showed a pH optimum at 8.5, an optimum substrate concentration of 200 nmoles of β,β-carotene per 25 ml of reaction mixture, an apparent Km with β,β-carotene as substrate of 9.5 · 10−6 M and a V 3.3 nmoles of retinal formation/mg protein per h. The reaction was linear upto 3 h and the reaction rate increased linearly with increase in enzyme protein concentration. The enzyme was activated by GSH and Fe2+ and inhibited by sodium dodecylsulfate, sulfhydryl binding and iron chelating agents. 3. 3.|The reaction catalysed by guinea pig enzyme was strictly stoichiometric. 4. 4.|Rabbit enzyme showed a close similarity with guinea pig enzyme with respect to time course, optimum substrate concentration, activation by Fe2+ and GSH, inhibition by sodium dodecylsulfate, iron chelating and sulfhydryl binding agents. However, it showed a slightly lower pH optimum (pH 7.8). 5. 5.|The enzyme from guinea pig and rabbit showed remarkable similarity with respect to cleavage of carotenoids. The enzyme from both the species was more specific for β,β-carotene but could also cleave a number of other carotenoids at the 15,15′-double bond. 6. 6.|10′-Apo-β-carotenal and 10′-apo-β-carotenol were readily cleaved compared with other apo-β-carotenals and apo-β-carotenols tested. 7. 7.|It has been conclusively shown for the first time that mono-ring substituted carotenoids are also cleaved at the 15,15′-double bond.
Resumo:
What can the statistical structure of natural images teach us about the human brain? Even though the visual cortex is one of the most studied parts of the brain, surprisingly little is known about how exactly images are processed to leave us with a coherent percept of the world around us, so we can recognize a friend or drive on a crowded street without any effort. By constructing probabilistic models of natural images, the goal of this thesis is to understand the structure of the stimulus that is the raison d etre for the visual system. Following the hypothesis that the optimal processing has to be matched to the structure of that stimulus, we attempt to derive computational principles, features that the visual system should compute, and properties that cells in the visual system should have. Starting from machine learning techniques such as principal component analysis and independent component analysis we construct a variety of sta- tistical models to discover structure in natural images that can be linked to receptive field properties of neurons in primary visual cortex such as simple and complex cells. We show that by representing images with phase invariant, complex cell-like units, a better statistical description of the vi- sual environment is obtained than with linear simple cell units, and that complex cell pooling can be learned by estimating both layers of a two-layer model of natural images. We investigate how a simplified model of the processing in the retina, where adaptation and contrast normalization take place, is connected to the nat- ural stimulus statistics. Analyzing the effect that retinal gain control has on later cortical processing, we propose a novel method to perform gain control in a data-driven way. Finally we show how models like those pre- sented here can be extended to capture whole visual scenes rather than just small image patches. By using a Markov random field approach we can model images of arbitrary size, while still being able to estimate the model parameters from the data.
Resumo:
Thickness measurements derived from optical coherence tomography (OCT) images of the eye are a fundamental clinical and research metric, since they provide valuable information regarding the eye’s anatomical and physiological characteristics, and can assist in the diagnosis and monitoring of numerous ocular conditions. Despite the importance of these measurements, limited attention has been given to the methods used to estimate thickness in OCT images of the eye. Most current studies employing OCT use an axial thickness metric, but there is evidence that axial thickness measures may be biased by tilt and curvature of the image. In this paper, standard axial thickness calculations are compared with a variety of alternative metrics for estimating tissue thickness. These methods were tested on a data set of wide-field chorio-retinal OCT scans (field of view (FOV) 60° x 25°) to examine their performance across a wide region of interest and to demonstrate the potential effect of curvature of the posterior segment of the eye on the thickness estimates. Similarly, the effect of image tilt was systematically examined with the same range of proposed metrics. The results demonstrate that image tilt and curvature of the posterior segment can affect axial tissue thickness calculations, while alternative metrics, which are not biased by these effects, should be considered. This study demonstrates the need to consider alternative methods to calculate tissue thickness in order to avoid measurement error due to image tilt and curvature.
Resumo:
1. The biopotencies relative to beta-carotene of several apocarotenoids, such as 8'-, 10'- and 12'-apo-beta-carotenal and methyl 8'-apo-beta-carotenoate, were investigated in rats, on a molar basis, by both curative-growth assay and liver-storage tests. 2. In the curative-growth assays, on a molar basis the biopotencies of 8'-, 10'- and 12'-apo-beta-carotenal and methyl 8'-apo-beta-carotenoate were 72, 78, 72 and 53% respectively, whereas on a weight basis the corresponding values were 93, 111, 111 and 63%, with respect to beta-carotene taken as 100%. In terms of yield of vitamin A, these values were much lower in the liver-storage tests. 3. When 8'-apo-beta-carotenal was fed, the unchanged aldehyde together with small amounts of the corresponding alcohol and larger proportions of the acid rapidly appeared in the tissues of both rats and chickens. The 8'-apocarotenol, 8'-apocarotenoic acid and its methyl ester were absorbed unchanged. The free acid disappeared most rapidly from the tissues, but its methyl ester persisted in the tissues longest. 4. On the basis of these observations it is suggested that most of an apocarotenal is oxidized to the corresponding acid, which, in turn, is mostly degraded to retinoic acid, with small proportions of it being attacked by the dioxygenase system giving retinal.