949 resultados para Proof.
Resumo:
Large digital chips use a significant amount of energy to broadcast a low-skew, multigigahertz clock to millions of latches located throughout the chip. Every clock cycle, the large aggregate capacitance of the clock network is charged from the supply and then discharged to ground. Instead of wasting this stored energy, it is possible to recycle the energy by controlling its delivery to another part of the chip using an on-chip dc-dc converter. The clock driver and switching converter circuits share many compatible characteristics that allow them to be merged into a single design and fully integrated on-chip. Our buck converter prototype, manufactured in 90-nm CMOS, provides a proof-of-concept that clock network energy can be recycled to other parts of the chip, thus lowering overall energy consumption. It also confirms that monolithic multigigahertz switching converters utilizing zero-voltage switching can be implemented in deep-submicrometer CMOS. With multigigahertz operation, fully integrated inductors and capacitors use a small amount of chip area with low losses. Combining the clock driver with the power converter can share the large MOSFET drivers necessary as well as being energy and space efficient. We present an analysis of the losses which we confirm by experimentally comparing the merged circuit with a conventional clock driver. © 2012 IEEE.
Resumo:
A novel integration method for the production of cost-effective optoelectronic printed circuit boards (OE PCBs) is presented. The proposed integration method allows fabrication of OE PCBs with manufacturing processes common to the electronics industry while enabling direct attachment of electronic components onto the board with solder reflow processes as well as board assembly with automated pick-and-place tools. The OE PCB design is based on the use of polymer multimode waveguides, end-fired optical coupling schemes, and simple electro-optic connectors, eliminating the need for additional optical components in the optical layer, such as micro-mirrors and micro-lenses. A proof-of-concept low-cost optical transceiver produced with the proposed integration method is presented. This transceiver is fabricated on a low-cost FR4 substrate, comprises a polymer Y-splitter together with the electronic circuitry of the transmitter and receiver modules and achieves error-free 10-Gb/s bidirectional data transmission. Theoretical studies on the optical coupling efficiencies and alignment tolerances achieved with the employed end-fired coupling schemes are presented while experimental results on the optical transmission characteristics, frequency response, and data transmission performance of the integrated optical links are reported. The demonstrated optoelectronic unit can be used as a front-end optical network unit in short-reach datacommunication links. © 2011-2012 IEEE.
Resumo:
This paper presents a novel platform for the formation of cost-effective PCB-integrated optical waveguide sensors. The sensor design relies on the use of multimode polymer waveguides that can be formed directly on standard PCBs and commercially-available chemical dyes, enabling the integration of all essential sensor components (electronic, photonic, chemical) on low-cost substrates. Moreover, it enables the detection of multiple analytes from a single device by employing waveguide arrays functionalised with different chemical dyes. The devices can be manufactured with conventional methods of the PCB industry, such as solder-reflow processes and pick-and-place assembly techniques. As a proof of principle, a PCB-integrated ammonia gas sensor is fabricated on a FR4 substrate. The sensor operation relies on the change of the optical transmission characteristics of chemically functionalised optical waveguides in the presence of ammonia molecules. The fabrication and assembly of the sensor unit, as well as fundamental simulation and characterisation studies, are presented. The device achieves a sensitivity of approximately 30 ppm and a linear response up to 600 ppm at room temperature. Finally, the potential to detect multiple analytes from a single device is demonstrated using principal-component analysis. © 1983-2012 IEEE.
Resumo:
Clustering behavior is studied in a model of integrate-and-fire oscillators with excitatory pulse coupling. When considering a population of identical oscillators, the main result is a proof of global convergence to a phase-locked clustered behavior. The robustness of this clustering behavior is then investigated in a population of nonidentical oscillators by studying the transition from total clustering to the absence of clustering as the group coherence decreases. A robust intermediate situation of partial clustering, characterized by few oscillators traveling among nearly phase-locked clusters, is of particular interest. The analysis complements earlier studies of synchronization in a closely related model. © 2008 American Institute of Physics.
Resumo:
We introduce a conceptually novel structured prediction model, GPstruct, which is kernelized, non-parametric and Bayesian, by design. We motivate the model with respect to existing approaches, among others, conditional random fields (CRFs), maximum margin Markov networks (M3N), and structured support vector machines (SVMstruct), which embody only a subset of its properties. We present an inference procedure based on Markov Chain Monte Carlo. The framework can be instantiated for a wide range of structured objects such as linear chains, trees, grids, and other general graphs. As a proof of concept, the model is benchmarked on several natural language processing tasks and a video gesture segmentation task involving a linear chain structure. We show prediction accuracies for GPstruct which are comparable to or exceeding those of CRFs and SVMstruct.
Resumo:
Optical interconnects are increasingly considered for use in high-performance electronic systems. Multimode polymer waveguides are a promising technology for the formation of optical backplanes as they enable cost-effective integration of optical links onto standard printed circuit boards. In this paper, we present a 40 Gb/s optical backplane demonstrator based on the use of polymer multimode waveguides and a regenerative shared bus architecture. The system allows bus extension by cascading multiple polymeric bus modules through 3R regenerator units enabling the connection of an arbitrary number of electrical cards onto the bus. The proof-ofprinciple demonstrator reported here is formed with low-cost, commercially-available active devices and electronic components mounted on conventional FR4 substrates and achieves error-free 4×10 Gb/s optical interconnection between any two card interfaces on the bus. © 2013 IEEE.
Resumo:
We review our recent exploratory investigations on mode division multiplexing using hollow-core photonic bandgap fibers (HC-PBGFs). Compared with traditional multimode fibers, HC-PBGFs have several attractive features such as ultra-low nonlinearities, low-loss transmission window around 2 μm etc. After having discussed the potential and challenges of using HC-PBGFs as transmission fibers for mode multiplexing applications, we will report a number of recent proof-of-concept results obtained in our group using direct detection receivers. The first one is the transmission of two 10.7 Gbit/s non-return to zero (NRZ) data signals over a 30 m 7-cell HC-PBGF using the offset mode launching method. In another experiment, a short piece of 19-cell HC-PBGF was used to transmit two 20 Gbit/s NRZ channels using a spatial light modulator for precise mode excitation. Bit-error-ratio (BER) performances below the forward-error-correction (FEC) threshold limit (3.3×10-3) are confirmed for both data channels when they propagate simultaneously. © 2013 IEEE.
Resumo:
The mismatch in thermal response between a High Pressure Compressor (HPC) drum and casing is a limiting factor in the reduction of compressor clearance. An experimental test rig has been used to demonstrate the concept of radial inflow to reduce the thermal time constant of HPC discs. The testing uses a simulated idle - Maximum Take Off (MTO) - idle transient in order to measure the thermal response directly. The testing is fully scaled in the dimensionless sense to engine conditions. A simple closure model based on lumped capacitance is used to illustrate the scope of potential benefits. The proof-of-concept testing shows that HPC disc time constant reductions of the order 2 are feasible with a radial-inflow bleed of only 4% of bore flow at scaled MTO conditions. Using the experimental results, the simple closure modelling suggests that for a stage with a significant mismatch in thermal response, reductions in 2D axis-symmetric clearance of as much as 50% at MTO conditions may be possible along with significant scope for improvements at cruise conditions. Copyright © 2013 by ASME.
Resumo:
The limit order book of an exchange represents an information store of market participants' future aims and for many traders the information held in this store is of interest. However, information loss occurs between orders being entered into the exchange and limit order book data being sent out. We present an online algorithm which carries out Bayesian inference to replace information lost at the level of the exchange server and apply our proof of concept algorithm to real historical data from some of the world's most liquid futures contracts as traded on CME GLOBEX, EUREX and NYSE Liffe exchanges. © 2013 © 2013 Taylor & Francis.
Resumo:
A scalable polymer waveguide-based regenerative optical bus architecture for use in board-level communications is presented. As a proof-of-principle demonstration, a 4-channel polymer bus formed on a FR4 substrate providing 10 Gb/s/channel data transmission is reported. © 2012 OSA.
Resumo:
This paper studies the subexponential prefactor to the random-coding bound for a given rate. Using a refinement of Gallager's bounding techniques, an alternative proof of a recent result by Altuǧ and Wagner is given, and the result is extended to the setting of mismatched decoding. © 2013 IEEE.
Resumo:
Transmitter-based equalization is investigated for enhanced performance in 10 Gb/s multimodefiber links. Rigorous simulations and proof-of-principle experiments over 500 m of FDDI-grade fiber confirm for the first time the potential superiority of the technique relative to receiver-based schemes. © 2007 Optical Society of America.
Resumo:
The structural characteristic of cubic GaN (C-GaN) nucleation layers on GaAs(0 0 1) substrates by metalorganic chemical vapor deposition was in detail investigated first by X-ray diffraction (XRD) measurements, using a Huber five-circle diffractometer and an intense synchrotron X-ray source. The XRD results indicate that the C-GaN nucleation layers are highly crystallized. Phi scans and pole figures of the (1 1 1) reflections give a convincing proof that the GaN nucleation layers show exactly cubic symmetrical structure. The GaN(1 1 1) reflections at 54.74degrees in chi are a measurable component, however (002) components parallel to the substrate surface are not detected. Possible explanations are suggested. The pole figures of {1 0 (1) over bar 0} reflections from H-GaN inclusions show that the parasitic H-GaN originates from the C-GaN nucleation layers. The coherence lengths along the close-packed [1 1 1] directions estimated from the (1 1 1) peaks are nanometer order of magnitude. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A determination of {1 1 1}A and {1 1 1}B in cubic GaN(c-GaN) was investigated by X-ray diffraction technique in detail. The c-GaN films are grown on GaAs(0 0 1) substrates by metalorganic chemical vapor deposition(MOCVD). The difference of integrated intensities measured by omega scan for the different order diffractions from {1 1 1}A and {1 1 1}B planes in the four-circle diffractometer gives convincing evidence as to which is the {1 1 1}A and which is the {1 1 1}B planes. The lesser deviation between the ratios of /F-h k l/(2)//F-(h) over bar (k) over bar (l) over bar/(2) and the calculated values after dispersion correction for atomic scattering factor shows that the content of parasitic hexagonal GaN(h-GaN) grown on c-GaN{1 1 1}A planes is higher than that on {1 1 1}B planes. The reciprocal space mappings provide additional proof that the h-GaN inclusions in c-GaN films appear as lamellar structure. (C) 2001 Published by Elsevier Science B.V.