980 resultados para Product environmental footprint
Resumo:
INTRODUCTION: Leishmaniasis is an infectious and parasitic zoonotic, non-contagious, vector-borne disease caused by protozoa of the genus Leishmania. In Brazil, the major vector of Leishmania (Leishmania) infantum chagasi (Cunha & Chagas, 1934) is Lutzomyia longipalpis. Barra do Garças, State of Mato Grosso, was designated as a priority area by the Brazilian Ministry of Health for american visceral leishmaniasis, and it is important to identify the vector species present in this municipality. Our objective was to raise sandflies and study the influence of environmental variables on the vector density of Lutzomyia longipalpis. METHODS: We performed entomological monitoring in 3 districts using Centers for Disease Control and Prevention (CDC) light traps and recorded human cases of american visceral leishmaniasis in the city. We calculated the relative frequency and richness of sandflies and applied a transfer function model to the vector density correlate with relative humidity. RESULTS: The sandfly population was composed of 2 genera and 27 species, totaling 8,097 individuals. Monitoring identified Lutzomyia longipalpis (44%), followed by Lutzomyia lenti (18.9%), Lutzomyia whitmani (13.9%), Lutzomyia carmelinoi (9.1%), Lutzomyia evandroi (5.1%), Lutzomyia termitophila (3.3%), Lutzomyia sordellii (1.9%), and 20 other species (<4%). The male:female ratio was 3.5:1. We observed high species diversity (Dα = 6.65). Lutzomyia longipalpis showed occurrence peaks during the rainy season; there was a temporal correlation with humidity, but not with frequency or temperature. CONCLUSIONS: The presence of Lutzomyia longipalpis in the urban area of Barra do Garças underscores the changing disease profile, which was previously restricted to the wild environment.
Resumo:
The following work project illustrates the strategic issues There App, a mobile application, faces regarding the opportunity to expand from its current state as a product to a multisided platform. Initially, a market analysis is performed to identify the ideal customer groups to be integrated in the platform. Strategic design issues are then discussed on how to best match its value proposition with the identified market opportunity. Suggestions on how the company should organize its resources and operational processes to best deliver on its value proposition complete the work.
Resumo:
Double degree
Resumo:
The purpose of this project is to understand if the brand Sagres is damaging the product Sagres Radler. The beer market in Portugal was studied and focus groups were used to perceive the impact of the brand in the product. The mother brand is bringing the beer association into a product designed to engage people that don’t like beer. With the insights, a new proposal was drawn and tested. Although it was not possible to prove that the new concept is better for the population, there are strong indications that the brand isn’t enabling the achievement of the proposed target.
Resumo:
Introduction The incidence of opportunistic fungal infections has increased in recent years and is considered an important public health problem. Among systemic and opportunistic mycoses, cryptococcosis is distinguished by its clinical importance due to the increased risk of infection in individuals infected by human immunodeficiency virus. Methods To determine the occurrence of pathogenic Cryptococcus in pigeon excrement in the City of Araraquara, samples were collected from nine environments, including state and municipal schools, abandoned buildings, parks, and a hospital. The isolates were identified using classical tests, and susceptibility testing for the antifungal drugs (fluconazole, itraconazole, voriconazole, and amphotericin B) independently was also performed. After collection, the excrement samples were plated on Niger agar and incubated at room temperature. Results A total of 87 bird dropping samples were collected, and 66.6% were positive for the genus Cryptococcus. The following species were identified: Cryptococcus neoformans (17.2%), Cryptococcus gattii (5.2%), Cryptococcus ater (3.5%), Cryptococcus laurentti (1.7%), and Cryptococcus luteolus (1.7%). A total of 70.7% of the isolates were not identified to the species level and are referred to as Cryptococcus spp. throughout the manuscript. Conclusions Although none of the isolates demonstrated resistance to antifungal drugs, the identification of infested areas, the proper control of birds, and the disinfection of these environments are essential for the epidemiological control of cryptococcosis.
Resumo:
Product fundamentals are essential in explaining heterogeneity in the product space. The scope for adapting and transferring capabilities into the production of different goods determines the speed and intensity of the structural transformation process and entails dissimilar development opportunities for nations. Future specialization patterns become then partly determined by the current network of products’ relatedness. Building on previous literature, this paper explicitly compares methodological concepts of product connectivity to conclude in favor of the density measure we propose combined with the Revealed Relatedness Index (RRI) approach presented by Freitas and Salvado (2011). Overall, RRI specifications displayed more consistent behavior when different time horizons are equated.
Resumo:
The history between cetaceans and humans is documented throughout time not only in reports, descriptions, and tales but also in legal documents, laws and regulations, and tithes. This wealth of information comes from the easy spotting and identification of individuals due to their large size, surface breathing, and conspicuous above water behaviour. This work is based on historical sources and accounts accounting for cetacean presence for the period between the 12th and 17th centuries, as well as scientific articles, newspapers, illustrations, maps, non-published scientific reports, and other grey literature from the 18th century onwards. Information on whale use in Portugal's mainland has been found since as early as the 12th century and has continued to be created throughout time. No certainty can be given for medieval and earlier events, but both scavenging of stranded whales or use of captured ones may have happened. There is an increasing number of accounts of sighted, stranded, used, or captured cetaceans throughout centuries which is clearly associated with a growing effort towards the study of these animals. Scientific Latin species denominations only started to be registered from the 18th century onwards, as a consequence of the evolution of natural sciences in Portugal and increasing interest from zoologists. After the 19th century, a larger number of observations were recorded, and from the 20th century to the present day, regular scientific records have been collected. Research on the environmental history of cetaceans in Portugal shows a several-centuries-old exploitation of whales and dolphins, as resources mainly for human consumption, followed in later centuries by descriptions of natural history documenting strandings and at sea encounters. Most cetaceans species currently thought to be present in Portuguese mainland waters were at some point historically recorded.
Resumo:
Introduction Visceral leishmaniasis (VL) stands out as a zoonosis observed on four continents and also in urban expansion zones in several regions of Brazil. Methods A cross-sectional epidemiological study of VL cases in children under 15 years of age in the period from 2007 to 2012. Clinical data were gathered from medical reports; meteorological data were obtained at the Meteorological Measurement Department of UFT. Environmental variables were divided into two periods, rainy and dry. Results The study revealed no difference by gender (p=0.67) among the 821 patients. However, the most affected age group was between one and five years of age (58.6%; p<0.01); the highest prevalence of the disease (99.03%; p<0.01) occurred in urban zones; and the most affected ethnic group (85.5%; p<0.01) was mixed race. The highest incidence coefficients in this population occurred in 2007 and 2008 (578.39/100,000 inhabitants; 18.5/100,000 inhabitants, respectively), whereas the highest lethality coefficients occurred in 2008 and 2011 (0.85/100 deaths). There was no significant correlation between average rainfall and the number of VL cases. The correlation between temperature and number of VL cases was negative (r = -0.4039; p<0.01). Conclusions In Araguaína, visceral leishmaniasis in children under 15 years is an urban-based endemic disease distributed across all districts of the city wherein temperature as an environmental factor, a higher prevalence in mixed race children between one and five years of age, and a high incidence coefficient all strongly contribute to child mortality.
Resumo:
ABSTRACT INTRODUCTION: Emergent and re-emergent waterborne protozoans have become a worldwide public health problem, especially among vulnerable groups. METHODS: This cross-sectional study evaluated 17 HIV-infected children and their families. RESULTS: A high (76.5%) percentage of parasite-infected children was observed, even among children with CD4+ T-cell counts of >200 cells/mm3. Giardia spp., Cryptosporidium spp. and Cyclospora spp. were observed in 41.2% of these children Low income, poor hygiene practices, and co-infection in domestic, peridomestic and scholastic environments were significant sources of these intestinal infections. CONCLUSIONS: Early diagnosis, timely treatment, and socio-educational interventions may improve the health conditions of this vulnerable population.
Resumo:
Due to the progresses made in the branch of embedded technologies, manufacturers are becoming able to pack their shop floor level manufacturing resources with even more complex functionalities. This technological progression is radically changing the way production systems are designed and deployed, as well as, monitored and controlled. The dissemination of smart devices inside production processes confers new visibility on the production system while enabling for a more efficient and effective management of the operations. By turning the current manufacturing resources functionalities into services based on a Service Oriented Architecture (SOA), in order to expose them as a service to the user, the binomial manufacturing resource/service will push the entire manufacturing enterprise visibility to another level while enabling the global optimization of the operations and processes of a production system while, at the same time, supporting its accommodation to the operational spike easily and with reduced impact on production. The present work implements a Cloud Manufacturing infrastructure for achieving the resource/service value-added i.e. to facilitate the creation of services that are the composition of currently available atomic services. In this context, manufacturing resource virtualization (i.e. formalization of resources capabilities into services accessible inside and outside the enterprise) and semantic representation/description are the pillars for achieving resource service composition. In conclusion, the present work aims to act on the manufacturing resource layer where physical resources and shop floor capabilities are going to be provided to the user as a SaaS (Software as a Service) and/or IaaS (Infrastructure as a Service).
Resumo:
Software Product Line (SPL) engineering aims at achieving efficient development of software products in a specific domain. New products are obtained via a process which entails creating a new configuration specifying the desired product’s features. This configuration must necessarily conform to a variability model, that describes the scope of the SPL, or else it is not viable. To ensure this, configuration tools are used that do not allow invalid configurations to be expressed. A different concern, however, is making sure that a product addresses the stakeholders’ needs as best as possible. The stakeholders may not be experts on the domain, so they may have unrealistic expectations. Also, the scope of the SPL is determined not only by the domain but also by limitations of the development platforms. It is therefore possible that the desired set of features goes beyond what is possible to currently create with the SPL. This means that configuration tools should provide support not only for creating valid products, but also for improving satisfaction of user concerns. We address this goal by providing a user-centric configuration process that offers suggestions during the configuration process, based on the use of soft constraints, and identifying and explaining potential conflicts that may arise. Suggestions help mitigating stakeholder uncertainty and poor domain knowledge, by helping them address well known and desirable domain-related concerns. On the other hand, automated conflict identification and explanation helps the stakeholders to understand the trade-offs required for realizing their vision, allowing informed resolution of conflicts. Additionally, we propose a prototype-based approach to configuration, that addresses the order-dependency issues by allowing the complete (or partial) specification of the features in a single step. A subsequent resolution process will then identify possible repairs, or trade-offs, that may be required for viabilization.
Resumo:
Polysaccharides are gaining increasing attention as potential environmental friendly and sustainable building blocks in many fields of the (bio)chemical industry. The microbial production of polysaccharides is envisioned as a promising path, since higher biomass growth rates are possible and therefore higher productivities may be achieved compared to vegetable or animal polysaccharides sources. This Ph.D. thesis focuses on the modeling and optimization of a particular microbial polysaccharide, namely the production of extracellular polysaccharides (EPS) by the bacterial strain Enterobacter A47. Enterobacter A47 was found to be a metabolically versatile organism in terms of its adaptability to complex media, notably capable of achieving high growth rates in media containing glycerol byproduct from the biodiesel industry. However, the industrial implementation of this production process is still hampered due to a largely unoptimized process. Kinetic rates from the bioreactor operation are heavily dependent on operational parameters such as temperature, pH, stirring and aeration rate. The increase of culture broth viscosity is a common feature of this culture and has a major impact on the overall performance. This fact complicates the mathematical modeling of the process, limiting the possibility to understand, control and optimize productivity. In order to tackle this difficulty, data-driven mathematical methodologies such as Artificial Neural Networks can be employed to incorporate additional process data to complement the known mathematical description of the fermentation kinetics. In this Ph.D. thesis, we have adopted such an hybrid modeling framework that enabled the incorporation of temperature, pH and viscosity effects on the fermentation kinetics in order to improve the dynamical modeling and optimization of the process. A model-based optimization method was implemented that enabled to design bioreactor optimal control strategies in the sense of EPS productivity maximization. It is also critical to understand EPS synthesis at the level of the bacterial metabolism, since the production of EPS is a tightly regulated process. Methods of pathway analysis provide a means to unravel the fundamental pathways and their controls in bioprocesses. In the present Ph.D. thesis, a novel methodology called Principal Elementary Mode Analysis (PEMA) was developed and implemented that enabled to identify which cellular fluxes are activated under different conditions of temperature and pH. It is shown that differences in these two parameters affect the chemical composition of EPS, hence they are critical for the regulation of the product synthesis. In future studies, the knowledge provided by PEMA could foster the development of metabolically meaningful control strategies that target the EPS sugar content and oder product quality parameters.
Resumo:
The present PhD thesis develops the cell functional enviromics (CFE) method to investigate the relationship between environment and cellular physiology. CFE may be defined as the envirome-wide cellular function reconstruction through the collection and systems-level analysis of dynamic envirome data. Throughout the thesis, CFE is illustrated by two main applications to cultures of a constitutive P. pastoris X33 strain expressing a scFv antibody fragment. The first application addresses the challenge of culture media development. A dataset was built from 26 shake flask experiments, with variations in trace elements concentrations and basal medium dilution based on the standard BSM+PTM1. Protein yield showed high sensitivity to culture medium variations, while biomass was essentially determined by BSM dilution. High scFv yield was associated with high overall metabolic fluxes through central carbon pathways concomitantly with a relative shift of carbon flux from biosynthetic towards energy-generating pathways. CFE identified three cellular functions (growth, energy generation and by-product formation) that together described 98.8% of the variance in observed fluxes. Analyses of how medium factors relate to identified cellular functions showed iron and manganese at concentrations close to PTM1 inhibit overall metabolic activity. The second application addresses bioreactor operation. Pilot 50 L fed-batch cultivations, followed by 1H-NMR exometabolite profiling, allowed the acquisition of data for 21 environmental factors over time. CFE identified five major metabolic pathway groups that are frequently activated by the environment. The resulting functional enviromics map may serve as template for future optimization of media composition and feeding strategies for Pichia pastoris. The present PhD thesis is a step forward towards establishing the foundations of CFE that is still at its infancy. The methods developed herein are a contribution for changing the culture media and process development paradigm towards a holistic and systematic discipline in the future.
Resumo:
There is a need to develop viable techniques for removal and recovery organic and inorganic compounds from environmental matrices, due to their ecotoxicity, regulatory obligations or potential supplies as secondary materials. In this dissertation, electro –removal and –recovery techniques were applied to five different contaminated environmental matrices aiming phosphorus (P) recovery and/or contaminants removal. In a first phase, the electrokinetic process (EK) was carried out in soils for (i) metalloids and (ii) organic contaminants (OCs) removal. In the case of As and Sb mine contaminated soil, the EK process was additionally coupled with phytotechnologies. In a second phase, the electrodialytic process (ED) was applied to wastes aiming P recovery and simultaneous removal of (iii) toxins from membrane concentrate, (iv) heavy metals from sewage sludge ash (SSA), and (v) OCs from sewage sludge (SS). EK enhanced phytoremediation showed to be viable for the remediation of soils contaminated with metalloids, as although remediation was low, it combines advantages of both technologies while allowing site management. EK also proved to be an effective remediation technology for the removal and degradation of emerging OCs from two types of soil. Aiming P recovery and contaminants removal, different ED cell set-ups were tested. For the membrane concentrates, the best P recovery was achieved in a three compartment (3c) cell, but the highest toxin removal was obtained in a two compartment (2c) cell, placing the matrix in the cathode end. In the case of SSA the best approach for simultaneous P recovery and heavy metals removal was to use a 2c-cell placing the matrix in the anode end. However, for simultaneous P recovery and OCs removal, SS should be placed in the cathode end, in a 2c-cell. Overall, the data support that the selection of the cell design should be done case-by-case.