999 resultados para Precipitable water


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the study was to assess the feasibility and effectiveness of aquatic‐based exercise in the form of deep water running ( DWR ) as part of a multimodal physiotherapy programme ( MMPP ) for breast cancer survivors. A controlled clinical trial was conducted in 42 primary breast cancer survivors recruited from community‐based P rimary C are C entres. Patients in the experimental group received a MMPP incorporating DWR , 3 times a week, for an 8‐week period. The control group received a leaflet containing instructions to continue with normal activities. Statistically significant improvements and intergroup effect size were found for the experimental group for P iper F atigue S cale‐ R evised total score ( d = 0.7, P = 0.001), as well as behavioural/severity ( d = 0.6, P = 0.05), affective/meaning ( d = 1.0, P = 0.001) and sensory ( d = 0.3, P = 0.03) domains. Statistically significant differences between the experimental and control groups were also found for general health ( d = 0.5, P < 0.05) and quality of life ( d = 1.3, P < 0.05). All participants attended over 80% of sessions, with no major adverse events reported. The results of this study suggest MMPP incorporating DWR decreases cancer‐related fatigue and improves general health and quality of life in breast cancer survivors. Further, the high level of adherence and lack of adverse events indicate such a programme is safe and feasible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of GNSS tracked Lagrangian drifters allows more realistic quantification of fluid motion and dispersion coefficients than Eulerian techniques because such drifters are analogues of particles that are relevant to flow field characterisation and pollutant dispersion. Using the fast growing Real Time Kinematic (RTK) positioning technique derived from Global Satellite Navigation Systems (GNSS), drifters are developed for high frequency (10 Hz) sampling with position estimates to centimetre accuracy. The drifters are designed with small size and less direct wind drag to follow the sub-surface flow which characterizes dispersion in shallow waters. An analysis of position error from stationary observation indicates that the drifter can efficiently resolve motion up to 1 Hz. The result of the field deployments of the drifter in conjunction with acoustic Eulerian devices shows higher estimate of the drifter streamwise velocities. Single particle statistical analysis of field deployments in a shallow estuarine zone yielded dispersion coefficients estimate comparable to those of dye tracer studies. The drifters capture the tidal elevation during field studies in a tidal estuary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Repeatable and accurate seagrass mapping is required for understanding seagrass ecology and supporting management decisions. For shallow (< 5 m) seagrass habitats, these maps can be created by integrating high spatial resolution imagery with field survey data. Field survey data for seagrass is often collected via snorkelling or diving. However, these methods are limited by environmental and safety considerations. Autonomous Underwater Vehicles (AUVs) are used increasingly to collect field data for habitat mapping, albeit mostly in deeper waters (>20 m). Here we demonstrate and evaluate the use and potential advantages of AUV field data collection for calibration and validation of seagrass habitat mapping of shallow waters (< 5 m), from multispectral satellite imagery. The study was conducted in the seagrass habitats of the Eastern Banks (142 km2), Moreton Bay, Australia. In the field, georeferenced photos of the seagrass were collected along transects via snorkelling or an AUV. Photos from both collection methods were analysed manually for seagrass species composition and then used as calibration and validation data to map seagrass using an established semi-automated object based mapping routine. A comparison of the relative advantages and disadvantages of AUV and snorkeller collected field data sets and their influence on the mapping routine was conducted. AUV data collection was more consistent, repeatable and safer in comparison to snorkeller transects. Inclusion of deeper water AUV data resulted in mapping of a larger extent of seagrass (~7 km2, 5 % of study area) in the deeper waters of the site. Although overall map accuracies did not differ considerably, inclusion of the AUV data from deeper water transects corrected errors in seagrass mapped at depths to 5 m, but where the bottom is visible on satellite imagery. Our results demonstrate that further development of AUV technology is justified for the monitoring of seagrass habitats in ongoing management programs.