979 resultados para Polymnia sonchifolia extract


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this paper was to study a method based on gas production technique to measure the biological effects of tannins on rumen fermentation. Six feeds were used as fermentation substrates in a semi-automated gas method: feed A - aroeira (Astronium urundeuva); feed B - jurema preta (Mimosa hostilis), feed C - sorghum grains (Sorghum bicolor); feed D - Tifton-85 (Cynodon sp.); and two others prepared mixing 450 g sorghum leaves, 450 g concentrate (maize and soybean meal) and 100 g either of acacia (Acacia mearnsii) tannin extract (feed E) or quebracho (Schinopsis lorentzii) tannin extract (feed F) per kg (w:w). Three assays were carried out to standardize the bioassay for tannins. The first assay compared two binding agents (polyethylene glycol - PEG - and polyvinyl polypirrolidone - PVPP) to attenuate the tannin effects. The complex formed by PEG and tannins showed to be more stable than PVPP and tannins. Then, in the second assay, PEG was used as binding agent, and this assay was done to evaluate levels of PEG (0, 500, 750, 1000 and 1250 mg/g DM) to minimize the tannin effect. All the tested levels of PEG produced a response to evaluate tannin effects but the best response was for dose of 1000 mg/g DM. Using this dose of PEG, the final assay was carried out to test three compounds (tannic acid, quebracho extract and acacia extract) to establish a curve of biological equivalent effect of tannins. For this, five levels of each compound were added to I g of a standard feed (Lucerne hay). The equivalent effect showed not to be directly related to the chemical analysis for tannins. It was shown that different sources of tannins had different activities or reactivities. The curves of biological equivalence can provide information about tannin reactivity and its use seems to be important as an additional factor for chemical analysis. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While evaluating several laboratory-cultured cyanobacteria strains for the presence of paralytic shellfish poison neurotoxins, the hydrophilic extract of Microcystis aeruginosa strain SPC777-isolated from Billings`s reservoir, So Paulo, Brazil-was found to exhibit lethal neurotoxic effect in mouse bioassay. The in vivo test showed symptoms that unambiguously were those produced by PSP. In order to identify the presence of neurotoxins, cells were lyophilized, and the extracts were analyzed by HPLC-FLD and HPLC-MS. HPLC-FLD analysis revealed four main Gonyautoxins: GTX4(47.6%), GTX2(29.5%), GTX1(21.9%), and GTX3(1.0%). HPLC-MS analysis, on other hand, confirmed both epimers, with positive Zwitterions M(+) 395.9 m/z for GTX3/GTX2 and M(+) 411 m/z for GTX4/GTX1 epimers. The hepatotoxins (Microcystins) were also evaluated by ELISA and HPLC-MS analyses. Positive immunoreaction was observed by ELISA assay. Alongside, the HPLC-MS analyses revealed the presence of [l-ser(7)] MCYST-RR. The N-methyltransferase (NMT) domain of the microcystin synthetase gene mcyA was chosen as the target sequence to detect the presence of the mcy gene cluster. PCR amplification of the NMT domain, using the genomic DNA of the SPC777 strain and the MSF/MSR primer set, resulted in the expected 1,369 bp product. The phylogenetic analyses grouped the NMT sequence with the NMT sequences of other known Microcystis with high bootstrap support. The taxonomical position of M. aeruginosa SPC777 was confirmed by a detailed morphological description and a phylogenetic analysis of 16S rRNA gene sequence. Therefore, co-production of PSP neurotoxins and microcystins by an isolated M. aeruginosa strain is hereby reported for the first time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sequential injection analysis (SIA) is proposed for managing microvolumes of sample and arsenic species solutions for speciation analysis by capillary electrophoresis focusing on the reduction of hazardous waste residues. An electronically controlled hydrodynamic injector was projected to introduce microvolumes of solutions prepared by SIA into the CE capillary with precision better than 2%. The determination of arsenite, arsenate, monomethylarsonic acid, dimethylarsinic acid, and arsenobetaine was performed from 50 mu L volumes of lyophilized urine and extract of shrimp with the system hyphenated to inductively coupled plasma mass spectrometry (CE-ICP-SFMS).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability of a recently isolated Scheffersomyces stipitis strain (UFMG-IMH 43.2) to produce ethanol from xylose was evaluated. For the assays, a hemicellulosic hydrolysate produced by dilute acid hydrolysis of sugarcane bagasse was used as the fermentation medium. Initially, the necessity of adding nutrients (MgSO(4).7H(2)O, yeast extract and/or urea) to this medium was verified, and the yeast extract supplementation favoured ethanol production by the yeast. Then, in a second stage, assays under different initial xylose and cell concentrations, supplemented or not with yeast extract, were performed. All these three variables showed significant (p < 0.05) influence on ethanol production. The best results (ethanol yield and productivity of 0.19 g/g and 0.13 g/l/h, respectively) were obtained using the hydrolysate containing an initial xylose concentration of 30 g/l, supplemented with 5.0 g/l yeast extract and inoculated with an initial cell concentration of 2.0 g/l. S. stipitis UFMG-IMH 43.2 was demonstrated to be a yeast strain with potential for use in xylose conversion to ethanol. The establishment of the best fermentation conditions was also proved to be of great importance to increasing the product formation by this yeast strain. These findings open up new perspectives for the establishment of a feasible technology for ethanol production from hemicellulosic hydrolysates. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flavor compounds` formation and fermentative parameters of continuous high gravity brewing with yeasts immobilized on spent grains were evaluated at three different temperatures (7, 10 and 15 degrees C). The assays were performed in a bubble column reactor at constant dilution rate (0.05 h(-1)) and total gas flow rate (240 ml/min of CO(2) and 10 ml/min of air), with high-gravity all-malt wort (15 degrees Plato). The results revealed that as the fermentation temperature was increased from 7 to 15 degrees C, the apparent and real degrees of fermentation, rate of extract consumption, ethanol volumetric productivity and consumption of free amino nitrogen (FAN) increased. In addition, beer produced at 15 degrees C presented a higher alcohols to esters ratio (2.2-2.4:1) similar to the optimum values described in the literature. It was thus concluded that primary high-gravity (15 degrees Plato) all-malt wort fermentation by continuous process with yeasts immobilized on spent grains, can be carried out with a good performance at 15 degrees C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aims to evaluate the fermentability of cellulosic hydrolysates obtained by enzymatic saccharification of sugarcane bagasse pretreated by hydrothermal processing using Candida guilliermondii FTI 20037 yeast. The inoculum was obtained from yeast culture in a medium containing glucose as a carbon source supplemented with rice bran extract, CaCl(2)center dot 2H(2)O and (NH(4))(2)SO(4) in 50 mL Erlenmeyer flasks, containing 20 mL of medium, initial 5.5 pH under agitation of an orbital shaker (200 rpm) at 30A degrees C for 24 h. The cellulosic hydrolysates, prior to being used as a fermentation medium, were autoclaved for 15 min at 0.5 atm and supplemented with the same nutrients employed for the inoculum, except the glucose, using the same conditions for the inoculum, but with a period of 48 h. Preliminary results showed the highest consumption of glucose (97%) for all the hydrolysates, at 28 h of fermentation. The highest concentration of ethanol (20.5 g/L) was found in the procedure of sugarcane bagasse pretreated by hydrothermal processing (195A degrees C/10 min in 20 L reactor) and delignificated with NaOH 1.0% (w/v), 100A degrees C, 1 h in 500 mL stainless steel ampoules immersed in an oil bath.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A cellulose pulp obtained by chemical pre-treatment of brewer`s spent grain was saccharified by a commercial cellulase preparation and the produced hydrolysate (50 g/l glucose) was fermented to lactic acid by Lactobacillus delbrueckii. The effects of pH control and nutrient supplementation of the hydrolysate on fermentation performance were investigated. Addition of 5g/l yeast extract enhanced the lactic acid volumetric productivity that attained 0.53 g/l h, value 18% higher than that obtained from non-supplemented hydrolysate. Addition of the MRS broth medium components (except the carbon source) was still better, providing a productivity of 0.79 g/l h. In all the cases, the lactic acid yield factor was of 0.7 g/g glucose consumed, but the fermentations stopped after 24 h due to the pH drop from 6.0 to 4.2, resulting in large amounts of residual glucose (38-41 g/l). Fermentation runs pH-controlled at 6.0 gave better results than those where the initial pH was not further controlled. The best result, 35.54 g/l lactic acid (0.99 g/g glucose consumed) was obtained during the pH-controlled fermentation of hydrolysate medium supplemented with MRS components. The volumetric productivity at the end of this fermentation was 0.59 g/l h, with a maximum of 0.82 g/l h during the first 12 h. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lentinula edodes, commonly called shiitake, is considered a choice edible mushroom with exotic taste and medicinal quality. L. edodes grows very well and produces a range of enzymes when cultivated on eucalyptus residues. Development of appropriate experimental procedures for recovery and determination of enzymes became a widely important cash crop. In this work, enzymes produced by L. edodes were extracted using different pH buffer and determined regarding peroxidases and proteases. Lignin peroxidase (LiP) was not detected in the extracts based on veratryl alcohol or azure B oxidation. Proteases were very low while Mn-peroxidases (MnP) predominated. The optimal pH for MnP recovery was 5.0, under agitation at 25 degrees C. The oxidation of phenol red decreased after dark-colored small compounds or ions were eliminated by dialysis. The extract of L. edodes contained components of high molecular weight, such as proteases or high polyphenol, that could be involved in the LiP inactivation. L. edodes sample previously submitted to dialysis was also joined to UP of Phanerochaete chrysosporium and a total inhibition of UP was observed. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of initial xylose concentration and nutritional supplementation of brewer`s spent grain hydrolysate on xylitol production by Candida guilliermondii were evaluated using experimental design methodology. The hydrolysate containing 55, 75 or 95 g/l xylose, supplemented or not with nutrients (calcium chloride, ammonium sulfate and rice bran extract), was used as fermentation medium. The increase in xylitol yield and productivity was related to the increase of initial xylose concentration, but up to a certain limit. above of which the yeast performance was not improved. The hydrolysate supplementation with nutrients did not interfere with xylose-to-xylitol conversion. By using the statistic tool the best conditions for maximum xylitol production were found. which consisted in using the non-supplemented hydrolysate containing 70 g/l initial xylose concentration. Under these conditions, a xylitol yield of 0.78 g/g and productivity of 0.58 g/(l h) were achieved. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work work evaluates linoleic acid peroxidation reactions initiated by Fe(3+)-reducing compounds recovered from Eucalyptus grandis, biotreated with the biopulping fungus Ceriporiopsis subvermispora. The aqueous extracts from biotreated wood had the ability to reduce Fe(3+) ions from freshly prepared solutions. The compounds responsible for the Fe(3+)-reducing activity corresponded to UV-absorbing substances with apparent molar masses from 3 kDa to 5 kDa. Linoleic acid peroxidation reactions conducted in the presence of Fe(3+) ions and the Fe(3+)-reducing compounds showed that the rate of O(2) consumption during peroxidation was proportional to the Fe(3+)-reducing activity present in each extract obtained from biotreated wood. This peroxidation reaction was coupled with in-vitro treatment of ball-milled E. grandis wood. Ultraviolet data showed that the reaction system released lignin fragments from the milled wood. Size exclusion chromatography data indicated that the solubilized material contained a minor fraction representing high-molar-mass molecules excluded by the column and a main low-molar-mass peak. Overall evaluation of the data suggested that the Fe(3+)-reducing compounds formed during wood biodegradation by C subvermispora can mediate lignin degradation through linoleic acid peroxidation. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The enzymatic hydrolysis of sugarcane bagasse was investigated by treating a peroxide-alkaline bagasse with a pineapple stem juice, xylanase and cellulase. Pre-treatment procedures of sugarcane bagasse with alkaline hydrogen peroxide were evaluated and compared. Analyses were performed using 2(4) factorial designs, with pre-treatment time, temperature, magnesium sulfate and hydrogen peroxide concentration as factors. The responses evaluated were the yield of cellobiose and glucose released from pretreated bagasse after enzymatic hydrolysis. The results show that the highest enzymatic conversion was obtained for bagasse using 2% hydrogen peroxide at 60 degrees C for 16 h in the presence of 0.5% magnesium sulfate. Bagasse (5%) was treated with pineapple stem extract, which contains mixtures of protease and esterase, in combination with xylanase and cellulase. It was observed that the amount of glucose and cellobiose released from bagasse increased with the mixture of enzymes. It is believed that the enzymes present in pineapple extracts are capable of hydrolyze specific linkages that would facilitate the action of digesting plant cell walls enzymes. This increases the amount of glucose and other hexoses that are released during the enzymatic treatment and also reduces the amount of cellulase necessary in a typical hydrolysis. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sugarcane bagasse hemicellulose was isolated in a one-step chemical extraction using hydrogen peroxide in alkaline media. The polysaccharide containing 80.9% xylose and small amounts of L-arabinose, 4-O-methyl-D-glucuronic acid and glucose, was hydrolyzed by crude enzymatic extracts from Thermoascus aurantiacus at 50 degrees C. Conditions of enzymatic hydrolysis leading to the best yields of xylose and xylooligosaccharides (DP 2-5) were investigated using substrate concentration in the range 0.5-3.5% (w/v), enzyme load 40-80 U/g of the substrate, and reaction time from 3 to 96 h, applying a 22 factorial design. The maximum conversion to xylooligosaccharides (37.1%) was obtained with 2.6% of substrate and xylanase load of 60 U/g. The predicted maximum yield of xylobiose by a polynomial model was 41.6%. Crude enzymatic extract of T. aurantiacus generate from sugarcane bagasse hemicellulose 39% of xylose, 59% of xylobiose, and 2% of other xylooligosaccharides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to evaluate the ethanol production from the sugars contained in the sugarcane bagasse hemicellulosic hydrolysate with the yeast Pichia stipitis DSM 3651. The fermentations were carried out in 250-mL Erlenmeyers with 100 mL of medium incubated at 200 rpm and 30 A degrees C for 120 h. The medium was composed by raw (non-detoxified) hydrolysate or by hydrolysates detoxified by pH alteration followed by active charcoal adsorption or by adsorption into ion-exchange resins, all of them supplemented with yeast extract (3 g/L), malt extract (3 g/L), and peptone (5 g/L). The initial concentration of cells was 3 g/L. According to the results, the detoxification procedures removed inhibitory compounds from the hemicellulosic hydrolysate and, thus, improved the bioconversion of the sugars into ethanol. The fermentation using the non-detoxified hydrolysate led to 4.9 g/L ethanol in 120 h, with a yield of 0.20 g/g and a productivity of 0.04 g L(-1) h(-1). The detoxification by pH alteration and active charcoal adsorption led to 6.1 g/L ethanol in 48 h, with a yield of 0.30 g/g and a productivity of 0.13 g L(-1) h(-1). The detoxification by adsorption into ion-exchange resins, in turn, provided 7.5 g/L ethanol in 48 h, with a yield of 0.30 g/g and a productivity of 0.16 g L(-1) h(-1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditionally, the raw materials for beer production are barley, hops, water, and yeast, but most brewers use also different adjuncts. During the alcoholic fermentation, the contribution of aroma compounds from other ingredients to the final beer flavor depends on the wort composition, on the yeast strain, and mainly on the process conditions. In this context, banana can also be a raw material favorable to alcoholic fermentation being rich in carbohydrates and minerals and providing low acidity. In this work, the objective was to evaluate the performance of wort adjusted with banana juice in different concentrations. For this, static fermentations were conducted at 15 degrees C at pilot scale (140 L of medium). The addition of banana that changed the concentration of all-malt wort from 10 degrees P to 12 and 15 degrees P were evaluated (degrees P is the weight of the extract or the sugar equivalent in 100 g solution, at 20 degrees C). The results showed an increase in ethanol production, with approximately 0.4 g/g ethanol yield and 0.6 g/L h volumetric productivity after 84 h of processing when concentrated wort was used. Thus, it was concluded that banana can be used as an adjunct in brewing methods, helping in the development of new products as well as in obtaining concentrated worts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Banana, an important component in the diet of the global population, is one of the most consumed fruits in the world. This fruit is also very favorable to industry processes (e. g., fermented beverages) due to its rich content on soluble solids and minerals, with low acidity. The main objective of this work was to evaluate the influence of factors such as banana weight and extraction time during a hot aqueous extraction process on the total soluble solids content of banana. The extract is to be used by the food and beverage industries. The experiments were performed with 105 mL of water, considering the moisture of the ripe banana (65%). Total sugar concentrations were obtained in a beer analyzer and the result expressed in degrees Plato (degrees P, which is the weight of the extract or the sugar equivalent in 100 g solution at 20 degrees C), aiming at facilitating the use of these results by the beverage industries. After previous studies of characterization of the fruit and of ripening performance, a 2(2) full-factorial star design was carried out, and a model was developed to describe the behavior of the dependent variable (total soluble solids) as a function of the factors (banana weight and extraction time), indicating as optimum conditions for extraction 38.5 g of banana at 39.7 min.