775 resultados para Plasma fatty acid composition
Resumo:
Oxidative stress is a physiological condition that is associated with atherosclerosis. and it can be influenced by diet. Our objective was to group fifty-seven individuals with dyslipidaemia controlled by statins according to four oxidative biomarkers, and to evaluate the diet pattern and blood biochemistry differences between these groups. Blood samples were collected and the following parameters were evaluated: diet intake; plasma fatty acids; lipoprotein concentration; glucose; oxidised LDL (oxLDL); malondialdehyde (MDA): total antioxidant activity by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing ability power assays. Individuals were separated into five groups by cluster analysis. All groups showed a difference with respect to at least one of the four oxidative stress biomarkers. The separation of individuals in the first axis was based upon their total antioxidant activity. Clusters located on the right side showed higher total antioxidant activity, higher myristic fatty acid and lower arachidonic fatty acid proportions than clusters located on the left side. A negative correlation was observed between DPPH and the peroxidability index. The second axis showed differences in oxidation status as measured by MDA and oxLDL concentrations. Clusters located on the Upper side showed higher oxidative status and lower HDL cholesterol concentration than clusters located on the lower side. There were no differences in diet among the five clusters. Therefore, fatty acid synthesis and HDL cholesterol concentration seem to exert a more significant effect on the oxidative conditions of the individuals with dyslipidaemia controlled by statins than does their food intake.
Resumo:
We investigated the effects of dietary trans fatty acids, PUFA, and SEA on body and liver fat content, liver histology, and mRNA of enzymes involved in fatty acid metabolism. LDL receptor knockout weaning male mice were fed for 16 wk with diets containing 40% energy as either trans fatty acids (TRANS), PUFA, or SEA. Afterwards, subcutaneous and epididymal fat were weighed and histological markers of nonalcoholic fatty liver disease (NAFLD) were assessed according to the Histological Scoring System for NAFLD. PPAR alpha, PPAR gamma, microsomal triglyceride transfer protein (MTP), carnitine palmitoyl transferase 1 (CPT-1), and sterol regulatory element binding protein-1c (SREBP-1c) mRNA were measured by quantitative RT-PCR. Food intake was similar in the 3 groups, although mice fed the TRANS diet gained less weight than those receiving the PUFA diet. Compared with the PUFA- and SEA-fed mice, TRANS-fed mice had greater plasma total cholesterol (TC) and triglyceride (TG) concentrations, less epididymal and subcutaneous fat, larger livers with nonalcoholic steatohepatitis (NASH)-like lesions, and greater liver TC and TG concentrations. Macrosteatosis in TRANS-fed mice was associated with a higher homeostasis model assessment of insulin resistance (HOMA(IR)) index and upregulated mRNA related to hepatic fatty acid synthesis (SREBP-1 c and PPAR gamma) and to downregulated MTP mRNA. Diet consumption did not alter hepatic mRNA related to fatty acid oxidation (PPAR alpha and CPT-1). In conclusion, compared with PUFA- and SFA-fed mice, TRANS-fed mice had less adiposity, impaired glucose tolerance characterized by greater HOMA(IR) index, and NASH-like lesions due to greater hepatic lipogenesis. These results demonstrate the role of trans fatty acid intake on the development of key features of metabolic syndrome. J. Nutr. 140: 1127-1132, 2010.
Resumo:
In this study, we analyzed the effect of aerobic exercise training (AET) and of a single bout of exercise on plasma oxidative stress and on antioxidant defenses in type 2 diabetes mellitus (DM) and in healthy control subjects (C). DM and C did not differ regarding triglycerides, high-density lipoprotein cholesterol (HDL-c), insulin, and HOMA index at baseline and after AET. To measure the lag time for low-density lipoprotein (LDL) oxidation (LAG) and the maximal rate of conjugated diene formation (MCD), participants` plasma HDL(2) and HDL(3) were incubated with LDL from pooled healthy donors` plasma. In the presence of HDL(3), both LAG and MCD were similar in C and DM, but only in DM did AET improve LAG and reduce MCD. In the presence of HDL(2), the lower baseline LAG in DM equaled C after AET. MCD was unchanged in DM after AET, but was lower than C only after AET. Furthermore, after AET plasma thiobarbituric acid-reactive substances were reduced only in DM subjects. Despite not modifying the total plasma antioxidant status and serum paraoxonase-1 activity in both groups, AET lowered the plasma lipid peroxides, corrected the HDL(2), and improved the HDL(3) antioxidant efficiency in DM independent of the changes in blood glucose, insulin, and plasma HDL concentration and composition.
Resumo:
The Santa Ines, a Brazilian hair sheep, has a non-seasonal breeding activity. Data regarding the duration of the postpartum anestrous period in Santa Ines lactating ewes is lacking and the objective of this trial was to determine the effects of replacing neutral detergent fibre (NDF) provided by coastcross (Cynodon sp.) hay with NDF contained in soybean hulls (SH) on the postpartum ovarian activity-as measured by the serum progesterone (P(4)) concentration. Fifty-six lactating ewes (body weight 56.1 +/- 6.8 kg) were individually penned and used in a randomized complete block design with 14 blocks and four treatments. The SH NDF replaced 33 (SH33), 67 (SH67), or 100% (SH100) of the NDF contributed by coastcross hay in the control diet (SHO). This resulted in a SH inclusion at rates of 0, 25, 54, and 85% of the dietary dry matter (DM). Blood samples were collected twice weekly from the 14th to 84th day postpartum and the serum P(4) concentrations determined by radioimmunoassay (RIA). It was estimated that the 1st postpartum ovulation occurred 6 days before the date that a serum P(4) >= 1 ng/ml concentration was first recorded. The mean body condition score (BCS; 0-5 scale) was 3.0 +/- 0.19 on day 14 postpartum and the mean BCS at day 56 postpartum increased linearly (P<0.01) with the inclusion levels of SH (3.09, 3.24, 3.34, and 3.36, respectively). Treatments did not differ significantly in the induction of postpartum days to the resumption of ovarian luteal activity (34.1 +/- 15.3 days postpartum). On days 25, 50, and 75 postpartum 36.80, and 100% of the ewes had resumed ovarian activity, respectively. Nonesterified fatty acid concentration decreased quadratically (P<0.05) with the SH inclusion, with values of 0.323, 0.244, 0.204, and 0.216 mequiv./l for the SHO, SH33, SH67, and SH100 treatments being recorded, respectively. Replacement of the NDF provided by coastcross hay with the NDF from the SH did not influence the duration of the postpartum anestrous period in Santa Ines lactating ewes. Considering a 150-day gestation period and the 34 days postpartum anestrous demonstrated in the present study, the current production system of a lambing interval of 8 months (3 lambing events in 2 years) may not be optimizing the production potential and a system in which the lambing interval is shortened by at least 1 month may be feasible. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Pecans from the cultivars Wichita and Western Schley [Carya illinoinensis (Wangenh.) K. Koch] collected over three years were analyzed for the following constituents: total lipid content; fatty acid profiles; sucrose content; protein; total dietary fiber; the minerals magnesium, calcium, potassium, sulfur, phosphorus, boron, copper, iron, manganese, sodium, zinc, and aluminum; vitamin C; and lipase; and lipoxygenase activities. Year of harvest and cultivar had little effect on the composition of the pecans. Overall, protein content was the only constituent that differed between pecans grown in Australia and those grown in the United States. This difference is probably related to differences in growing location and horticultural practices between the two countries.
Resumo:
Objective - The adjusted effect of long-chain polyunsaturated fatty acid (LCPUFA) intake during pregnancy on adiposity at birth of healthy full-term appropriate-for-gestational age neonates was evaluated. Study Design - In a cross-sectional convenience sample of 100 mother and infant dyads, LCPUFA intake during pregnancy was assessed by food frequency questionnaire with nutrient intake calculated using Food Processor Plus. Linear regression models for neonatal body composition measurements, assessed by air displacement plethysmography and anthropometry, were adjusted for maternal LCPUFA intakes, energy and macronutrient intakes, prepregnancy body mass index and gestational weight gain. Result - Positive associations between maternal docosahexaenoic acid intake and ponderal index in male offspring (β=0.165; 95% confidence interval (CI): 0.031–0.299; P=0.017), and between n-6:n-3 LCPUFA ratio intake and fat mass (β=0.021; 95% CI: 0.002–0.041; P=0.034) and percentage of fat mass (β=0.636; 95% CI: 0.125–1.147; P=0.016) in female offspring were found. Conclusion - Using a reliable validated method to assess body composition, adjusted positive associations between maternal docosahexaenoic acid intake and birth size in male offspring and between n-6:n-3 LCPUFA ratio intake and adiposity in female offspring were found, suggesting that maternal LCPUFA intake strongly influences fetal body composition.
Resumo:
Octopus vulgaris, Octopus maya, and Eledone cirrhosa from distinct marine environments [Northeast Atlantic (NEA), Northwest Atlantic (NWA), Eastern Central Atlantic, Western Central Atlantic (WCA), Pacific Ocean, and Mediterranean Sea] were characterized regarding their lipid and vitamin E composition. These species are those commercially more relevant worldwide. Significant interspecies and interorigin differences were observed. Unsaturated fatty acids account for more than 65% of total fatty acids, mostly ω-3 PUFA due to docosahexaenoic (18.4−29.3%) and eicosapentanoic acid (11.4− 23.9%) contributions. The highest ω-3 PUFA amounts and ω-3/ω-6 ratios were quantified in the heaviest specimens, O. vulgaris from NWA, with high market price, and simultaneously in the lowest graded samples, E. cirrhosa from NEA, of reduced dimensions. Although having the highest cholesterol contents, E. cirrhosa from NEA and O. maya from WCA have also higher protective fatty acid indexes. Chemometric discrimination allowed clustering the selected species and several origins based on lipid and vitamin E profiles.
Resumo:
OBJECTIVE: The adjusted effect of long-chain polyunsaturated fatty acid (LCPUFA) intake during pregnancy on adiposity at birth of healthy full-term appropriate-for-gestational age neonates was evaluated. STUDY DESIGN: In a cross-sectional convenience sample of 100 mother and infant dyads, LCPUFA intake during pregnancy was assessed by food frequency questionnaire with nutrient intake calculated using Food Processor Plus. Linear regression models for neonatal body composition measurements, assessed by air displacement plethysmography and anthropometry, were adjusted for maternal LCPUFA intakes, energy and macronutrient intakes, prepregnancy body mass index and gestational weight gain. RESULT: Positive associations between maternal docosahexaenoic acid intake and ponderal index in male offspring (β=0.165; 95% confidence interval (CI): 0.031-0.299; P=0.017), and between n-6:n-3 LCPUFA ratio intake and fat mass (β=0.021; 95% CI: 0.002-0.041; P=0.034) and percentage of fat mass (β=0.636; 95% CI: 0.125-1.147; P=0.016) in female offspring were found. CONCLUSION: Using a reliable validated method to assess body composition, adjusted positive associations between maternal docosahexaenoic acid intake and birth size in male offspring and between n-6:n-3 LCPUFA ratio intake and adiposity in female offspring were found, suggesting that maternal LCPUFA intake strongly influences fetal body composition.
Resumo:
BACKGROUND & AIMS: n-3 fatty acids are expected to downregulate the inflammatory responses, and hence may decrease insulin resistance. On the other hand, n-3 fatty acid supplementation has been reported to increase glycemia in type 2 diabetes. We therefore assessed the effect of n-3 fatty acids delivered with parenteral nutrition on glucose metabolism in surgical intensive care patients. METHODS: Twenty-four surgical intensive care patients were randomized to receive parenteral nutrition providing 1.25 times their fasting energy expenditure, with 0.25 g of either an n-3 fatty acid enriched-or a soy bean-lipid emulsion. Energy metabolism, glucose production, gluconeogenesis and hepatic de novo lipogenesis were evaluated after 4 days. RESULTS: Total energy expenditure was significantly lower in patients receiving n-3 fatty acids (0.015+/-0.001 vs. 0.019+/-0.001 kcal/kg/min with soy bean lipids (P<0.05)). Glucose oxidation, lipid oxidation, glucose production, gluconeogenesis, hepatic de novo lipogenesis, plasma glucose, insulin and glucagon concentrations did not differ (all P>0.05) in the 2 groups. CONCLUSIONS: n-3 fatty acids were well tolerated in this group of severely ill patients. They decreased total energy expenditure without adverse metabolic effects.
Resumo:
BACKGROUND FABP4 is predominantly expressed in adipose tissue, and its circulating levels are linked with obesity and a poor atherogenic profile. OBJECTIVE In patients with a wide BMI range, we analyze FABP4 expression in adipose and hepatic tissues in the settings of obesity and insulin resistance. Associations between FABP4 expression in adipose tissue and the FABP4 plasma level as well as the main adipogenic and lipolytic genes expressed in adipose tissue were also analyzed. METHODS The expression of several lipogenic, lipolytic, PPAR family and FABP family genes was analyzed by real time PCR. FABP4 protein expression in total adipose tissues and its fractions were determined by western blot. RESULTS In obesity FABP4 expression was down-regulated (at both mRNA and protein levels), with its levels mainly predicted by ATGL and inversely by the HOMA-IR index. The BMI appeared as the only determinant of the FABP4 variation in both adipose tissue depots. FABP4 plasma levels showed a significant progressive increase according to BMI but no association was detected between FABP4 circulating levels and SAT or VAT FABP4 gene expression. The gene expression of FABP1, FABP4 and FABP5 in hepatic tissue was significantly higher in tissue from the obese IR patients compared to the non-IR group. CONCLUSION The inverse pattern in FABP4 expression between adipose and hepatic tissue observed in morbid obese patients, regarding the IR context, suggests that both tissues may act in a balanced manner. These differences may help us to understand the discrepancies between circulating plasma levels and adipose tissue expression in obesity.
Resumo:
OBJECTIVES: A lipidomic approach was employed in a clinically well-defined cohort of healthy obese women to explore blood lipidome phenotype ascribed to body fat deposition, with emphasis on epicardial adipose tissue (EAT). METHODS: The present investigation delivered a lipidomics signature of epicardial adiposity under healthy clinical conditions using a cohort of 40 obese females (age: 25-45 years, BMI: 28-40 kg/m(2) ) not showing any metabolic disease traits. Lipidomics analysis of blood plasma was employed in combination with in vivo quantitation of mediastinal fat depots by computerized tomography. RESULTS: All cardiac fat depots correlated to indicators of hepatic dysfunctions (ALAT and ASAT), which describe physiological connections between hepatic and cardiac steatosis. Plasma lipidomics encompassed overall levels of lipid classes, fatty acid profiles, and individual lipid species. EAT and visceral fat associated with diacylglycerols (DAG), triglycerides, and distinct phospholipid and sphingolipid species. A pattern of DAG and phosphoglycerols was specific to EAT. CONCLUSIONS: Human blood plasma lipidomics appears to be a promising clinical and potentially diagnostic readout for patient stratification and monitoring. Association of blood lipidomics signature to regio-specific mediastinal and visceral adiposity under healthy clinical conditions may help provide more biological insights into obese patient stratification for cardiovascular disease risks.
Resumo:
Recombinant strains of the oleaginous yeast Yarrowia lipolytica expressing the PHA synthase gene (PhaC) from Pseudomonas aeruginosa in the peroxisome were found able to produce polyhydroxyalkanoates (PHA). PHA production yield, but not the monomer composition, was dependent on POX genotype (POX genes encoding acyl-CoA oxidases) (Haddouche et al. FEMS Yeast Res 10:917-927, 2010). In this study of variants of the Y. lipolytica β-oxidation multifunctional enzyme, with deletions or inactivations of the R-3-hydroxyacyl-CoA dehydrogenase domain, we were able to produce hetero-polymers (functional MFE enzyme) or homo-polymers (with no 3-hydroxyacyl-CoA dehydrogenase activity) of PHA consisting principally of 3-hydroxyacid monomers (>80%) of the same length as the external fatty acid used for growth. The redirection of fatty acid flux towards β-oxidation, by deletion of the neutral lipid synthesis pathway (mutant strain Q4 devoid of the acyltransferases encoded by the LRO1, DGA1, DGA2 and ARE1 genes), in combination with variant expressing only the enoyl-CoA hydratase 2 domain, led to a significant increase in PHA levels, to 7.3% of cell dry weight. Finally, the presence of shorter monomers (up to 20% of the monomers) in a mutant strain lacking the peroxisomal 3-hydroxyacyl-CoA dehydrogenase domain provided evidence for the occurrence of partial mitochondrial β-oxidation in Y. lipolytica.
Resumo:
Caveolins are a crucial component of plasma membrane (PM) caveolae but have also been localized to intracellular compartments, including the Golgi complex and lipid bodies. Mutant caveolins associated with human disease show aberrant trafficking to the PM and Golgi accumulation. We now show that the Golgi pool of mainly newly synthesized protein is detergent-soluble and predominantly in a monomeric state, in contrast to the surface pool. Caveolin at the PM is not recognized by specific caveolin antibodies unless PM cholesterol is depleted. Exit from the Golgi complex of wild-type caveolin-1 or -3, but not vesicular stomatitis virus-G protein, is modulated by changing cellular cholesterol levels. In contrast, a muscular dystrophy-associated mutant of caveolin-3, Cav3P104L, showed increased accumulation in the Golgi complex upon cholesterol treatment. In addition, we demonstrate that in response to fatty acid treatment caveolin can follow a previously undescribed pathway from the PM to lipid bodies and can move from lipid bodies to the PM in response to removal of fatty acids. The results suggest that cholesterol is a rate-limiting component for caveolin trafficking. Changes in caveolin flux through the exocytic pathway can therefore be an indicator of cellular cholesterol and fatty acid levels.
Resumo:
Proteins secreted from adipose tissue are increasingly recognized to play an important role in the regulation of glucose metabolism. However, much less is known about their effect on lipid metabolism. The fasting-induced adipose factor (FIAF/angiopoietin-like protein 4/peroxisome proliferator-activated receptor gamma angiopoietin-related protein) was previously identified as a target of hypolipidemic fibrate drugs and insulin-sensitizing thiazolidinediones. Using transgenic mice that mildly overexpress FIAF in peripheral tissues we show that FIAF is an extremely powerful regulator of lipid metabolism and adiposity. FIAF overexpression caused a 50% reduction in adipose tissue weight, partly by stimulating fatty acid oxidation and uncoupling in fat. In addition, FIAF overexpression increased plasma levels of triglycerides, free fatty acids, glycerol, total cholesterol, and high density lipoprotein (HDL)-cholesterol. Functional tests indicated that FIAF overexpression severely impaired plasma triglyceride clearance but had no effect on very low density lipoprotein production. The effects of FIAF overexpression were amplified by a high fat diet, resulting in markedly elevated plasma and liver triglycerides, plasma free fatty acids, and plasma glycerol levels, and impaired glucose tolerance in FIAF transgenic mice fed a high fat diet. Remarkably, in mice the full-length form of FIAF was physically associated with HDL, whereas truncated FIAF was associated with low density lipoprotein. In human both full-length and truncated FIAF were associated with HDL. The composite data suggest that via physical association with plasma lipoproteins, FIAF acts as a powerful signal from fat and other tissues to prevent fat storage and stimulate fat mobilization. Our data indicate that disturbances in FIAF signaling might be involved in dyslipidemia.
Resumo:
BACKGROUND & AIMS: Although the physiological effects of n-3 polyunsaturated fatty acids (n-3PUFA) are generally thought to require several weeks of exposure to allow their incorporation into plasma membranes, intravenous (IV) n-3PUFA attenuate the cardiovascular and neuroendocrine response to stress within 3 h. Whether oral n-3 PUFA exert similar early effects remains unknown. OBJECTIVE: To assess whether acute IV or short term oral n-3PUFA administration reproduces the metabolic effects of long term oral supplements during exercise, and how it relates to their incorporation into platelets and red blood cells (RBC) membranes. DESIGN: Prospective single center open label study in 8 healthy subjects receiving a 3-h infusion of 0.6 g/kg body weight n-3PUFA emulsion, followed one week later by an oral administration of 0.6 g/kg over 3 consecutive days. Maximal power output (cycling exercise), maximal heart rate (HR), blood lactate at exhaustion, and platelet function were measured at baseline and after IV or 3-day oral supplementation; platelet and RBC membrane composition were assessed until 15 days after n-3PUFA administration. RESULTS: Both IV and oral n-3PUFA significantly decreased maximal HR (-6% and -5%), maximal power output (-10%) and peak blood lactate (-47% and -52%) Platelet function tests were unchanged. The EPA and DHA membrane contents of RBC and platelets increased significantly, but only to 1.7-1.9% of fatty acid content. CONCLUSION: The cardiovascular and metabolic effects of n-3 PUFA during exercise occur already within 1-3 days of exposure, and may be unrelated to changes in membranes composition. Effects occur within hours of administration and are unrelated to lipid membrane composition. Trial registered at clinicaltrials.gov as NCT00516178.