889 resultados para Phenotypic plasticity
Resumo:
Group-living animals must adjust the expression of their social behaviour to changes in their social environment and to transitions between life-history stages, and this social plasticity can be seen as an adaptive trait that can be under positive selection when changes in the environment outpace the rate of genetic evolutionary change. Here, we propose a conceptual framework for understanding the neuromolecular mechanisms of social plasticity. According to this framework, social plasticity is achieved by rewiring or by biochemically switching nodes of a neural network underlying social behaviour in response to perceived social information. Therefore, at the molecular level, it depends on the social regulation of gene expression, so that different genomic and epigenetic states of this brain network correspond to different behavioural states, and the switches between states are orchestrated by signalling pathways that interface the social environment and the genotype. Different types of social plasticity can be recognized based on the observed patterns of inter- versus intra-individual occurrence, time scale and reversibility. It is proposed that these different types of social plasticity rely on different proximate mechanisms at the physiological, neural and genomic level.
Resumo:
Quantitative genetics theory predicts adaptive evolution to be constrained along evolutionary lines of least resistance. In theory, hybridization and subsequent interspecific gene flow may however rapidly change the evolutionary constraints of a population and eventually change its evolutionary potential, but empirical evidence is still scarce. Using closely related species pairs of Lake Victoria cichlids sampled from four different islands with different levels of interspecific gene flow, we tested for potential effects of introgressive hybridization on phenotypic evolution in wild populations. We found that these effects differed among our study species. Constraints measured as the eccentricity of phenotypic variance-covariance matrices declined significantly with increasing gene flow in the less abundant species for matrices that have a diverged line of least resistance. In contrast we find no such decline for the more abundant species. Overall our results suggest that hybridization can change the underlying phenotypic variance-covariance matrix, potentially increasing the adaptive potential of such populations.
Resumo:
Nongenetic inheritance mechanisms such as transgenerational plasticity (TGP) can buffer populations against rapid environmental change such as ocean warming. Yet, little is known about how long these effects persist and whether they are cumulative over generations. Here, we tested for adaptive TGP in response to simulated ocean warming across parental and grandparental generations of marine sticklebacks. Grandparents were acclimated for two months during reproductive conditioning, whereas parents experienced developmental acclimation, allowing us to compare the fitness consequences of short-term vs. prolonged exposure to elevated temperature across multiple generations. We found that reproductive output of F1 adults was primarily determined by maternal developmental temperature, but carry-over effects from grandparental acclimation environments resulted in cumulative negative effects of elevated temperature on hatching success. In very early stages of growth, F2 offspring reached larger sizes in their respective paternal and grandparental environment down the paternal line, suggesting that other factors than just the paternal genome may be transferred between generations. In later growth stages, maternal and maternal granddam environments strongly influenced offspring body size, but in opposing directions, indicating that the mechanism(s) underlying the transfer of environmental information may have differed between acute and developmental acclimation experienced by the two generations. Taken together, our results suggest that the fitness consequences of parental and grandparental TGP are highly context dependent, but will play an important role in mediating some of the impacts of rapid climate change in this system.
Resumo:
In colonial species, it is often assumed that locations in the center of the colony are of highest quality and provide highest breeding success. We tested this prediction, known as the "central-periphery model," in a King Penguin colony in the subantarctic Crozet Archipelago. Breeding activity and survival of 150 penguins, fitted with transponder tags, were monitored over an entire breeding season. Among these 150 birds, 50 bred on the slope at the upper periphery of the colony, where the rates of predation and parasitism by ticks were high. Fifty birds bred in the center of the colony, where rates of predation and tick parasitism were low, and 50 bred at the lower end of the colony, where the rate of tick parasitism was low but predation and flooding were important risks. We predicted that the center of the colony should provide the safest breeding place and consequently be characterized by the highest breeding success and be used by the highest-quality individuals. Yet we found that penguins breeding in the center of the colony had the same breeding success as those at both peripheral locations. In addition, penguins breeding on the upper slope had a higher survival rate than penguins breeding at the center or bottom of the slope and were likely of higher quality. Our study does not support the central-periphery model and emphasizes the complexity behind the relationships among breeding site, breeding success, and individual quality.
Resumo:
Cover title.
Resumo:
At head of title: Office of Naval Research, Contract N7onr-358 T.O.1 NR-041-032.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
The placement of monocular laser lesions in the adult cat retina produces a lesion projection zone (LPZ) in primary visual cortex (V1) in which the majority of neurons have a normally located receptive field (RF) for stimulation of the intact eye and an ectopically located RF ( displaced to intact retina at the edge of the lesion) for stimulation of the lesioned eye. Animals that had such lesions for 14 - 85 d were studied under halothane and nitrous oxide anesthesia with conventional neurophysiological recording techniques and stimulation of moving light bars. Previous work suggested that a candidate source of input, which could account for the development of the ectopic RFs, was long-range horizontal connections within V1. The critical contribution of such input was examined by placing a pipette containing the neurotoxin kainic acid at a site in the normal V1 visual representation that overlapped with the ectopic RF recorded at a site within the LPZ. Continuation of well defined responses to stimulation of the intact eye served as a control against direct effects of the kainic acid at the LPZ recording site. In six of seven cases examined, kainic acid deactivation of neurons at the injection site blocked responsiveness to lesioned-eye stimulation at the ectopic RF for the LPZ recording site. We therefore conclude that long-range horizontal projections contribute to the dominant input underlying the capacity for retinal lesion-induced plasticity in V1.
Resumo:
Effects of cigarette smoking and exposure to dietary cadmium (Cd) and lead (Pb) on urinary biomarkers of renal function and phenotypic variability of cytochrome P450 2A6 (CYP2A6) were investigated in a group of 96 healthy Thai men with mean age of 36.7 year (19-57 years). In non-smokers, Cd burden increased with age (r = 0.47, P < 0.001). In current smokers, Cd burden increased with both age (r = 0.45, P = 0.01) and number of cigarettes smoked per day (r = 0.32, P = 0.05). Cd-linked renal tubular dysfunction was seen in both smokers and non-smokers, but Pb-linked glomerular dysfunction was seen in smokers only, possibly due to more recent exposure to high levels of Cd and Pb, as reflected by 30-50% higher serum Cd and Pb levels in smokers than non-smokers (P < 0.05). Exposure to dietary Cd and Pb appeared to be associated with mild tubular dysfunction whereas dietary exposure plus cigarette smoking was associated with tubular plus glomerular dysfunction. Hepatic CYP2A6 activity in non-smokers showed a positive association with Cd burden (adjusted P = 0.38, P = 0.006), but it showed an inverse correlation with Pb (adjusted beta = -0.29, P = 0.003), suggesting opposing effects of Cd and Pb on hepatic CYP2A6 phenotype. In contrast, CYP2A6 activity in current smokers did not correlate with Cd or Pb, but it showed a positive correlation with serum ferritin levels (r = 0.45, P = 0.01). These finding suggest that Pb concentrations in the liver probably were too low to inhibit hepatic synthesis of heme and CYP2A6 and that the concurrent induction of hepatic CYP2A6 and ferritin was probably due to cigarette smoke constituents other than the Cd and Pb. (C) 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Natural populations inhabiting the same environment often independently evolve the same phenotype. Is this replicated evolution a result of genetic constraints imposed by patterns of genetic covariation? We looked for associations between directions of morphological divergence and the orientation of the genetic variance-covariance matrix (G) by using an experimental system of morphological evolution in two allopatric nonsister species of rainbow fish. Replicate populations of both Melanotaenia eachamensis and Melanotaenia duboulayi have independently adapted to lake versus stream hydrodynamic environments. The major axis of divergence (z) among all eight study populations was closely associated with the direction of greatest genetic variance (g(max)), suggesting directional genetic constraint on evolution. However, the direction of hydrodynamic adaptation was strongly associated with vectors of G describing relatively small proportions of the total genetic variance, and was only weakly associated with g(max). In contrast, divergence between replicate populations within each habitat was approximately proportional to the level of genetic variance, a result consistent with theoretical predictions for neutral phenotypic divergence. Divergence between the two species was also primarily along major eigenvectors of G. Our results therefore suggest that hydrodynamic adaptation in rainbow fish was not directionally constrained by the dominant eigenvector of G. Without partitioning divergence as a consequence of the adaptation of interest (here, hydrodynamic adaptation) from divergence due to other processes, empirical studies are likely to overestimate the potential for the major eigenvectors of G to directionally constrain adaptive evolution.
Resumo:
New tools derived from advances in molecular biology have not been widely adopted in plant breeding for complex traits because of the inability to connect information at gene level to the phenotype in a manner that is useful for selection. In this study, we explored whether physiological dissection and integrative modelling of complex traits could link phenotype complexity to underlying genetic systems in a way that enhanced the power of molecular breeding strategies. A crop and breeding system simulation study on sorghum, which involved variation in 4 key adaptive traits-phenology, osmotic adjustment, transpiration efficiency, stay-green-and a broad range of production environments in north-eastern Australia, was used. The full matrix of simulated phenotypes, which consisted of 547 location-season combinations and 4235 genotypic expression states, was analysed for genetic and environmental effects. The analysis was conducted in stages assuming gradually increased understanding of gene-to-phenotype relationships, which would arise from physiological dissection and modelling. It was found that environmental characterisation and physiological knowledge helped to explain and unravel gene and environment context dependencies in the data. Based on the analyses of gene effects, a range of marker-assisted selection breeding strategies was simulated. It was shown that the inclusion of knowledge resulting from trait physiology and modelling generated an enhanced rate of yield advance over cycles of selection. This occurred because the knowledge associated with component trait physiology and extrapolation to the target population of environments by modelling removed confounding effects associated with environment and gene context dependencies for the markers used. Developing and implementing this gene-to-phenotype capability in crop improvement requires enhanced attention to phenotyping, ecophysiological modelling, and validation studies to test the stability of candidate genetic regions.
Resumo:
Gating of the mechanosensitive channel MscS involves cooperative action of glycine and alanine residues along the pore-lining transmembrane helix. Opening of the channel is facilitated by an iris-like rotation and tilt of the pore-lining helices. Site-directed mutagenesis indicates that substantial structural plasticity can be tolerated by MscS without impairing its function.
Resumo:
At glutamatergic synapses, calcium influx through NMDA receptors (NMDARs) is required for long-term potentiation (LTP); this is a proposed cellular mechanism underlying memory and learning. Here we show that in lateral amygdala pyramidal neurons, SK channels are also activated by calcium influx through synaptically activated NMDARs, resulting in depression of the synaptic potential. Thus, blockade of SK channels by apamin potentiates fast glutamatergic synaptic potentials. This potentiation is blocked by the NMDAR antagonist AP5 (D(-)-2-amino-5-phosphono-valeric acid) or by buffering cytosolic calcium with BAPTA. Blockade of SK channels greatly enhances LTP of cortical inputs to lateral amygdala pyramidal neurons. These results show that NMDARs and SK channels are colocalized at glutamatergic synapses in the lateral amygdala. Calcium influx through NMDARs activates SK channels and shunts the resultant excitatory postsynaptic potential. These results demonstrate a new role for SK channels as postsynaptic regulators of synaptic efficacy.