918 resultados para Peptides opioïdes
Resumo:
The chemical compounds synthesised and secreted from the dermal glands of amphibian have diverse bioactivities that play key roles in the hosts' innate immune system and in causing diverse pharmacological effects in predators that may ingest the defensive skin secretions. As new biotechnological methods have developed, increasing numbers of novel peptides with novel activities have been discovered from this source of natural compounds. In this study, a number of defensive skin secretion peptide sequences were obtained from the European edible frog, P. kl. esculentus, using a 'shotgun' cloning technique developed previously within our laboratory. Some of these sequences have been previously reported but had either obtained from other species or were isolated using different methods. Two new skin peptides are described here for the first time. Esculentin-2c and Brevinin-2Tbe belong to the Esculentin-2 and Brevinin-2 families, respectively, and both are very similar to their respective analogues but with a few amino acid differences. Further, [Asn-3, Lys-6, Phe-13] 3-14-bombesin isolated previously from the skin of the marsh frog, Rana ridibunda, was identified here in the skin of P. kl. esculentus. Studies such as this can provide a rapid elucidation of peptide and corresponding DNA sequences from unstudied species of frogs and can rapidly provide a basis for related scientific studies such as those involved in systematic or the evolution of a large diverse gene family and usage by biomedical researchers as a source of potential novel drug leads or pharmacological agents.
Resumo:
Amphibian skin secretions are unique sources of bioactive molecules, particularly bioactive peptides. In this study, the skin secretion of the white-lipped tree frog (Litoria infrafrenata) was obtained to identify peptides with putative therapeutic potential. By utilizing skin secretion-derived mRNA, a cDNA library was constructed, a frenatin gene was cloned and its encoded peptides were deduced and confirmed using RP-HPLC, MALDI-TOF and MS/MS. The deduced peptides were identified as frenatin 4.1 (GFLEKLKTGAKDFASAFVNSIKGT) and a post-translationally modified peptide, frenatin 4.2 (GFLEKLKTGAKDFASAFVNSIK.NH2). Antimicrobial activity of the peptides was assessed by determining their minimal inhibitory concentrations (MICs) using standard model microorganisms. Through studying structure–activity relationships, analogues of the two peptides were designed, resulting in synthesis of frenatin 4.1a (GFLEKLKKGAKDFASALVNSIKGT) and frenatin 4.2a (GFLLKLKLGAKLFASAFVNSIK.NH2). Both analogues exhibited improved antimicrobial activities, especially frenatin 4.2a, which displayed significant enhancement of broad spectrum antimicrobial efficiency. The peptide modifications applied in this study, may provide new ideas for the generation of leads for the design of antimicrobial peptides with therapeutic applications.
Resumo:
Genetic mutations can cause a wide range of diseases, e.g. cancer. Gene therapy has the potential to alleviate or even cure these diseases. One of the many gene therapies developed so far is RNA-cleaving deoxyribozymes, short DNA oligonucleotides that specifically bind to and cleave RNA. Since the development of these synthetic catalytic oligonucleotides, the main way of determining their cleavage kinetics has been through the use of a laborious and error prone gel assay to quantify substrate and product at different time-points. We have developed two new methods for this purpose. The first one includes a fluorescent intercalating dye, PicoGreen, which has an increased fluorescence upon binding double-stranded oligonucleotides; during the course of the reaction the fluorescence intensity will decrease as the RNA is cleaved and dissociates from the deoxyribozyme. A second method was developed based on the common denominator of all nucleases, each cleavage event exposes a single phosphate of the oligonucleotide phosphate backbone; the exposed phosphate can simultaneously be released by a phosphatase and directly quantified by a fluorescent phosphate sensor. This method allows for multiple turnover kinetics of diverse types of nucleases, including deoxyribozymes and protein nucleases. The main challenge of gene therapy is often the delivery into the cell. To bypass cellular defenses researchers have used a vast number of methods; one of these are cell-penetrating peptides which can be either covalently coupled to or non-covalently complexed with a cargo to deliver it into a cell. To further evolve cell-penetrating peptides and understand how they work we developed an assay to be able to quickly screen different conditions in a high-throughput manner. A luciferase up- and downregulation experiment was used together with a reduction of the experimental time by 1 day, upscaling from 24- to 96-well plates and the cost was reduced by 95% compared to commercially available assays. In the last paper we evaluated if cell-penetrating peptides could be used to improve the uptake of an LNA oligonucleotide mimic of GRN163L, a telomerase-inhibiting oligonucleotide. The combination of cell-penetrating peptides and our mimic oligonucleotide lead to an IC50 more than 20 times lower than that of GRN163L.
Resumo:
Most living organisms are constantly exposed to potentially harmful pathogens. It is the immune system of the organism that enables it to survive in an environment loaded with dangerous pathogenic microorganisms. The innate immunity provides organisms with a rapid and non-specific first line of defense against pathogens. It includes physical barriers such as skin and mucous membranes and chemical barriers including the high acidity of gastric juice, and specialized soluble molecules that possess antimicrobial activity. One of the well-known innate immune defense mechanisms is the production of antimicrobial substances by specific cells or tissues of the organisms. Antimicrobial peptides (AMPs) are such natural substances that
Resumo:
Antimicrobial peptides (AMPs) are gene encoded, small sized, generally cationic, amphiphathic peptides characterized by antimicrobial activity against bacteria, fungi, viruses and other pathogens. They are a major component of the innate immune defense system of almost all living organisms, ranging from bacteria to humans and represent the first line of defense against the invading microbial pathogens (Boman, 1995; Zasloff, 2002). Antimicrobial peptides represent a heterogeneous group displaying multiple modes of action that are determined by the sequence and concentration of peptides. Their remarkable specificity for prokaryotes with low toxicity for eukaryotic cells has favored their investigation and exploitation as new antibiotics
Resumo:
Cette thèse présente la découverte de nouveaux inhibiteurs de l’amidotransférase ARNt-dépendante (AdT), et résume les connaissances récentes sur la biosynthèse du Gln-ARNtGln et de l’Asn-ARNtAsn par la voie indirecte chez la bactérie Helicobacter pylori. Dans le cytoplasme des eucaryotes, vingt acides aminés sont liés à leur ARNt correspondant par vingt aminoacyl-ARNt synthétases (aaRSs). Ces enzymes sont très spécifiques, et leur fonction est importante pour le décodage correct du code génétique. Cependant, la plupart des bactéries, dont H. pylori, sont dépourvues d’asparaginyl-ARNt synthétase et/ou de glutaminyl-ARNt synthétase. Pour former le Gln-ARNtGln, H. pylori utilise une GluRS noncanonique nommée GluRS2 qui glutamyle spécifiquement l’ARNtGln ; ensuite, une AdT trimérique, la GatCAB corrige le Glu-ARNtGln mésapparié en le transamidant pour former le Gln-ARNtGln, qui lira correctement les codons glutamine pendant la biosynthèse des protéines sur les ribosomes. La formation de l’Asn-ARNtAsn est similaire à celle du Gln-ARNtGln, et utilise la même GatCAB et une AspRS non-discriminatrice. Depuis des années 2000, la GatCAB est considérée comme une cible prometteuse pour le développement de nouveaux antibiotiques, puisqu’elle est absente du cytoplasme de l’être humain, et qu’elle est encodée dans le génome de plusieurs bactéries pathogènes. Dans le chapitre 3, nous présentons la découverte par la technique du « phage display » de peptides cycliques riches en tryptophane et en proline, et qui inhibent l’activité de la GatCAB de H. pylori. Les peptides P10 (CMPVWKPDC) et P9 (CSAHNWPNC) inhibent cette enzyme de façon compétitive par rapport au substrat Glu-ARNtGln. Leur constante d’inhibition (Ki) est 126 μM pour P10, et 392 μM pour P9. Des modèles moléculaires ont montré qu’ils lient le site actif de la réaction de transmidation catalysée par la GatCAB, grâce à la formation d’une interaction π-π entre le résidu Trp de ces peptides et le résidu Tyr81 de la sous-unité GatB, comme fait le A76 3’-terminal de l’ARNt. Dans une autre étude concernant des petits composés contenant un groupe sulfone, et qui mimiquent l’intermédiaire de la réaction de transamidation, nous avons identifié des composés qui inhibent la GatCAB de H. pylori de façon compétitive par rapport au substrat Glu-ARNtGln. Cinq fois plus petits que les peptides cycliques mentionnés plus haut, ces composés inhibent l’activité de la GatCAB avec des Ki de 139 μM pour le composé 7, et de 214 μM pour le composé 4. Ces inhibiteurs de GatCAB pourraient être utiles pour des études mécanistiques, et pourraient être des molécules de base pour le développement de nouvelles classes d’antibiotiques contre des infections causées par H. pylori.
Resumo:
Arbeit an der Bibliothek noch nicht eingelangt - Daten nicht geprüft
Resumo:
The on going global mortality and morbidity associated with viral pathogens highlights the need for the continued development of effective, novel antiviral molecules. The antiviral activity of cationic host defence peptides is of significant interest as novel therapeutics for treating viral infection and predominantly due to their broad spectrum antiviral activity. These peptides also display powerful immunomodulatory activity and are key mediators of inflammation. Therefore, they offer a significant opportunity to inform the development of novel therapeutics for treating viral infections by either directly targeting the pathogen or by enhancing the innate immune response. In this chapter, we review the antiviral activity of cathelicidins and defensins, and examine the potential for these peptides to be used as novel antiviral agents.
Resumo:
International audience
Resumo:
Modélisations moléculaires réalisés avec le logiciel HyperChem 8.
Resumo:
One of the greatest sources of biologically active compounds is natural products. Often these compounds serve as platforms for the design and development of novel drugs and therapeutics. The overwhelming amount of genomic information acquired in recent years has revealed that ribosomally synthesized and post-translationally modified natural products are much more widespread than originally anticipated. Identified in nearly all forms of life, these natural products display incredible structural diversity and possess a wide range of biological functions that include antimicrobial, antiviral, anti-inflammatory, antitumor, and antiallodynic activities. The unique pathways taken to biosynthesize these compounds offer exciting opportunities for the bioengineering of these complex molecules. The studies described herein focus on both the mode of action and biosynthesis of antimicrobial peptides. In Chapter 2, it is demonstrated that haloduracin, a recently discovered two-peptide lantibiotic, possesses nanomolar antimicrobial activity against a panel of bacteria strains. The potency of haloduracin rivals that of nisin, an economically and therapeutically relevant lantibiotic, which can be attributed to a similar dual mode of action. Moreover, it was demonstrated that this lantibiotic of alkaliphile origin has better stability at physiological pH than nisin. The molecular target of haloduracin was identified as the cell wall peptidoglycan precursor lipid II. Through the in vitro biosynthesis of haloduracin, several analogues of Halα were prepared and evaluated for their ability to inhibit peptidoglycan biosynthesis as well as bacterial cell growth. In an effort to overcome the limitations of in vitro biosynthesis strategies, a novel strategy was developed resulting in a constitutively active lantibiotic synthetase enzyme. This methodology, described in Chapter 3, enabled the production of fully-modified lacticin 481 products with proteinogenic and non-proteinogenic amino acid substitutions. A number of lacticin 481 analogues were prepared and their antimicrobial activity and ability to bind lipid II was assessed. Moreover, site-directed mutagenesis of the constitutively active synthetase resulted in a kinase-like enzyme with the ability to phosphorylate a number of peptide substrates. The hunt for a lantibiotic synthetase enzyme responsible for installing the presumed dehydro amino acids and a thioether ring in the natural product sublancin, led to the identification and characterization of a unique post-translational modification. The studies described in Chapter 4, demonstrate that sublancin is not a lantibiotic, but rather an unusual S-linked glycopeptide. Its structure was revised based on extensive chemical, biochemical, and spectroscopic characterization. In addition to structural investigation, bioinformatic analysis of the sublancin gene cluster led to the identification of an S-glycosyltransferase predicted to be responsible for the post-translational modification of the sublancin precursor peptide. The unprecedented glycosyltransferase was reconstituted in vitro and demonstrated remarkable substrate promiscuity for both the NDP-sugar co-substrate as well as the precursor peptide itself. An in vitro method was developed for the production of sublancin and analogues which were subsequently evaluated in bioactivity assays. Finally, a number of putative biosynthetic gene clusters were identified that appear to harbor the necessary genes for production of an S-glycopeptide. An additional S-glycosyltransferase with more favorable intrinsic properties including better expression, stability, and solubility was reconstituted in vitro and demonstrated robust catalytic abilities.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Química, Programa de Pós-Graduação em Química, 2016.
Resumo:
Dissertação de Mestrado, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2016
Resumo:
Tese de Doutoramento em Ciências Veterinárias na Especialidade de Ciências Biológicas e Biomédicas