940 resultados para Pari Passu priority
Resumo:
Objectives To estimate the burden of disease attributable to unsafe water, sanitation and hygiene (WSH) by age group for South Africa in 2000. Design World Health Organization comparative risk assessment methodology was used to estimate the disease burden attributable to an exposure by comparing the observed risk factor distribution with a theoretical lowest possible population distribution. A scenario-based approach was applied for estimating diarrhoeal disease burden from unsafe WSH. Six exposure scenarios were defined based on the type of water and sanitation infrastructure and environmental faecal-oral pathogen load. For ‘intestinal parasites’ and schistosomiasis, the burden was assumed to be 100% attributable to exposure to unsafe WSH. Setting South Africa. Outcome measures Disease burden from diarrhoeal diseases, intestinal parasites and schistosomiasis, measured by deaths and disability-adjusted life years (DALYs). Results 13 434 deaths were attributable to unsafe WSH accounting for 2.6% (95% uncertainty interval 2.4 - 2.7%) of all deaths in South Africa in 2000. The burden was especially high in children under 5 years, accounting for 9.3% of total deaths in this age group and 7.4% of burden of disease. Overall, the burden due to unsafe WSH was equivalent to 2.6% (95% uncertainty interval 2.5 - 2.7%) of the total disease burden for South Africa, ranking this risk factor seventh for the country. Conclusions Unsafe WSH remains an important risk factor for disease in South Africa, especially in children under 5. High priority needs to be given to the provision of safe and sustainable sanitation and water facilities and to promoting safe hygiene behaviours, particularly among children.
Resumo:
Background Burden of disease estimates for South Africa have highlighted the particularly high rates of injuries related to interpersonal violence compared with other regions of the world, but these figures tell only part of the story. In addition to direct physical injury, violence survivors are at an increased risk of a wide range of psychological and behavioral problems. This study aimed to comprehensively quantify the excess disease burden attributable to exposure to interpersonal violence as a risk factor for disease and injury in South Africa. Methods The World Health Organization framework of interpersonal violence was adapted. Physical injury mortality and disability were categorically attributed to interpersonal violence. In addition, exposure to child sexual abuse and intimate partner violence, subcategories of interpersonal violence, were treated as risk factors for disease and injury using counterfactual estimation and comparative risk assessment methods. Adjustments were made to account for the combined exposure state of having experienced both child sexual abuse and intimate partner violence. Results Of the 17 risk factors included in the South African Comparative Risk Assessment study, interpersonal violence was the second leading cause of healthy years of life lost, after unsafe sex, accounting for 1.7 million disability-adjusted life years (DALYs) or 10.5% of all DALYs (95% uncertainty interval: 8.5%-12.5%) in 2000. In women, intimate partner violence accounted for 50% and child sexual abuse for 32% of the total attributable DALYs. Conclusions The implications of our findings are that estimates that include only the direct injury burden seriously underrepresent the full health impact of interpersonal violence. Violence is an important direct and indirect cause of health loss and should be recognized as a priority health problem as well as a human rights and social issue. This study highlights the difficulties in measuring the disease burden from interpersonal violence as a risk factor and the need to improve the epidemiological data on the prevalence and risks for the different forms of interpersonal violence to complete the picture. Given the extent of the burden, it is essential that innovative research be supported to identify social policy and other interventions that address both the individual and societal aspects of violence.
Resumo:
Background We used data from the Global Burden of Diseases, Injuries, and Risk Factors Study 2010 (GBD 2010) to estimate the burden of disease attributable to mental and substance use disorders in terms of disability-adjusted life years (DALYs), years of life lost to premature mortality (YLLs), and years lived with disability (YLDs). Methods For each of the 20 mental and substance use disorders included in GBD 2010, we systematically reviewed epidemiological data and used a Bayesian meta-regression tool, DisMod-MR, to model prevalence by age, sex, country, region, and year. We obtained disability weights from representative community surveys and an internet-based survey to calculate YLDs. We calculated premature mortality as YLLs from cause of death estimates for 1980–2010 for 20 age groups, both sexes, and 187 countries. We derived DALYs from the sum of YLDs and YLLs. We adjusted burden estimates for comorbidity and present them with 95% uncertainty intervals. Findings In 2010, mental and substance use disorders accounted for 183·9 million DALYs (95% UI 153·5 million–216·7 million), or 7·4% (6·2–8·6) of all DALYs worldwide. Such disorders accounted for 8·6 million YLLs (6·5 million–12·1 million; 0·5% [0·4–0·7] of all YLLs) and 175·3 million YLDs (144·5 million–207·8 million; 22·9% [18·6–27·2] of all YLDs). Mental and substance use disorders were the leading cause of YLDs worldwide. Depressive disorders accounted for 40·5% (31·7–49·2) of DALYs caused by mental and substance use disorders, with anxiety disorders accounting for 14·6% (11·2–18·4), illicit drug use disorders for 10·9% (8·9–13·2), alcohol use disorders for 9·6% (7·7–11·8), schizophrenia for 7·4% (5·0–9·8), bipolar disorder for 7·0% (4·4–10·3), pervasive developmental disorders for 4·2% (3·2–5·3), childhood behavioural disorders for 3·4% (2·2–4·7), and eating disorders for 1·2% (0·9–1·5). DALYs varied by age and sex, with the highest proportion of total DALYs occurring in people aged 10–29 years. The burden of mental and substance use disorders increased by 37·6% between 1990 and 2010, which for most disorders was driven by population growth and ageing. Interpretation Despite the apparently small contribution of YLLs—with deaths in people with mental disorders coded to the physical cause of death and suicide coded to the category of injuries under self-harm—our findings show the striking and growing challenge that these disorders pose for health systems in developed and developing regions. In view of the magnitude of their contribution, improvement in population health is only possible if countries make the prevention and treatment of mental and substance use disorders a public health priority.
Resumo:
The Energy Efficiency (EE) Graduate Attributes Project focuses on engineering as a priority profession that has a significant role to play in addressing energy demand and supply issues in Australia. Specifically, this project aims to support embedding EE knowledge and skills throughout the engineering undergraduate curriculum, to help build capacity within the Australian workforce across major sectors of the economy, from mining, manufacturing and industrial applications to design, construction, maintenance and retrofitting built environments. The resultant report is intended to assist in future consultation with key groups such as Engineers Australia (EA), the Australian Council of Engineering Deans (ACED) and the eight EA colleges, to support systemic curriculum renewal and promote the design and development of high quality EE engineering education resources. The project is based on a whole-of-program outcomes-based approach to curriculum renewal, creating a transparent framework for integrating EE. This comprises collaborative consideration by academics and professional engineers who have experience in teaching and practising EE, to identify what students should learn to be equipped with relevant competencies by the time they graduate.
Resumo:
Online fraud poses a significant problem to society in terms of its monetary losses and the devastating impact on victims. It also poses significant challenges to law enforcement agencies, regarding their ability to investigate crimes which are complex, occur in a virtual environment, incorporate multiple (often international) jurisdictions, and have a very low reporting rate. This paper examines the police response to online fraud. It argues that traditionally, fraud has received little attention and priority from police agencies and this is exacerbated in the online context. In contrast to this, the paper presents the example of Project Sunbird, a partnership between the West Australian Police and the West Australian Department of Commerce which has embraced the use of financial intelligence to proactively contact suspected victims of online fraud. This paper argues that a proactive approach to policing online fraud can have substantial positive effects for police and victims alike.
Resumo:
Globally, Indigenous populations, which include Aboriginal and Torres Strait islanders in Australia and Māori people in New Zealand (NZ), have poorer health than their non-Indigenous counterparts. Indigenous peoples worldwide face substantial challenges in poverty, education, employment, housing and disconnection from ancestral lands. While addressing social determinants of health is a priority, solving clinical issues is equally important. Indeed, ignoring the latter until social issues improve risks further disparity as this may take generations. A systematic overview of interventions addressing social determinants of health found a striking lack of reliable evaluations.Where evidence was available, health improvement associated with interventions was modest or uncertain. 10 Thus advances in healthcare remain essential and these require the best evidence available in 11 preventing and managing common illnesses, including respiratory illnesses.
Resumo:
One of the problems to be solved in attaining the full potentials of hematopoietic stem cell (HSC) applications is the limited availability of the cells. Growing HSCs in a bioreactor offers an alternative solution to this problem. Besides, it also offers the advantages of eliminating labour intensive process as well as the possible contamination involved in the periodic nutrient replenishments in the traditional T-flask stem cell cultivation. In spite of this, the optimization of HSC cultivation in a bioreactor has been barely explored. This manuscript discusses the development of a mathematical model to describe the dynamics in nutrient distribution and cell concentration of an ex vivo HSC cultivation in a microchannel perfusion bioreactor. The model was further used to optimize the cultivation by proposing three alternative feeding strategies in order to prevent the occurrence of nutrient limitation in the bioreactor. The evaluation of these strategies, the periodic step change increase in the inlet oxygen concentration, the periodic step change increase in the media inflow, and the feedback control of media inflow, shows that these strategies can successfully improve the cell yield of the bioreactor. In general, the developed model is useful for the design and optimization of bioreactor operation.
Resumo:
Particulates with specific sizes and characteristics can induce potent immune responses by promoting antigen uptake of appropriate immuno-stimulatory cell types. Magnetite (Fe3O4) nanoparticles have shown many potential bioapplications due to their biocompatibility and special characteristics. Here, superparamagnetic Fe3O4 nanoparticles (SPIONs) with high magnetization value (70emug-1) were stabilized with trisodium citrate and successfully conjugated with a model antigen (ovalbumin, OVA) via N,N'-carbonyldiimidazole (CDI) mediated reaction, to achieve a maximum conjugation capacity at approximately 13μgμm-2. It was shown that different mechanisms governed the interactions between the OVA molecules and magnetite nanoparticles at different pH conditions. We evaluated as-synthesized SPION against commercially available magnetite nanoparticles. The cytotoxicity of these nanoparticles was investigated using mammalian cells. The reported CDI-mediated reaction can be considered as a potential approach in conjugating biomolecules onto magnetite or other biodegradable nanoparticles for vaccine delivery.
Resumo:
DNA vaccines or proteins are capable of inducing specific immunity; however, the translation to the clinic has generally been problematic, primarily due to the reduced magnitude of immune response and poor pharmacokinetics. Herein we demonstrate a composite microsphere formulation, composed of mesoporous silica spheres (MPS) and poly(d,l-lactide-co-glycolide) (PLGA), enables the controlled delivery of a prime-boost vaccine via the encapsulation of plasmid DNA (pDNA) and protein in different compartments. Method with modified dual-concentric-feeding needles attached to a 40 kHz ultrasonic atomizer was studied. These needles focus the flow of two different solutions, which passed through the ultrasonic atomizer. The process synthesis parameters, which are important to the scale-up of composite microspheres, were also studied. These parameters include polymer concentration, feed flowrate, and volumetric ratio of polymer and pDNA-PEI/MPS-BSA. This fabrication technique produced composite microspheres with mean D[4,3] ranging from 6 to 34 μm, depending upon the microsphere preparation. The resultant physical morphology of composite microspheres was largely influenced by the volumetric ratio of pDNA-PEI/MPS-BSA to polymer, and this was due to the precipitation of MPS at the surface of the microspheres. The encapsulation efficiencies were predominantly in the range of 93-98% for pDNA and 46-68% for MPS. In the in vitro studies, the pDNA and protein showed different release kinetics in a 40 day time frame. The dual-concentric-feeding in ultrasonic atomization was shown to have excellent reproducibility. It was concluded that this fabrication technique is an effective method to prepare formulations containing a heterologous prime-boost vaccine in a single delivery system.
Resumo:
Polymethacrylate monoliths, specifically poly(glycidyl methacrylate-co-ethylene dimethacrylate) or poly(GMA-co-EDMA) monoliths, are a new generation of chromatographic supports and are significantly different from conventional particle-based adsorbents, membranes, and other monolithic supports for biomolecule purification. Similar to other monoliths, polymethacrylate monoliths possess large pores which allow convective flow of mobile phase and result in high flow rates at reduced pressure drop, unlike particulate supports. The simplicity of the adsorbent synthesis, pH resistance, and the ease and flexibility of tailoring their pore size to that of the target biomolecule are the key properties which differentiate polymethacrylate monoliths from other monoliths. Polymethacrylate monoliths are endowed with reactive epoxy groups for easy functionalization (with anion-exchange, hydrophobic, and affinity ligands) and high ligand retention. In this review, the structure and performance of polymethacrylate monoliths for chromatographic purification of biomolecules are evaluated and compared to those of other supports. The development and use of polymethacrylate monoliths for research applications have grown rapidly in recent times and have enabled the achievement of high through-put biomolecule purification on semi-preparative and preparative scales.
Resumo:
Single step affinity chromatography was employed for the purification of plasmid DNA (pDNA), thus eliminating several steps compared with current commercial purification methods for pDNA. Significant reduction in pDNA production time and cost was obtained. This chromatographic operation employed a peptide-monolith construct to isolate pDNA from Escherichia coli (E. coli) impurities present in a clarified lysate feedstock. Mild conditions were applied to avoid any degradation of pDNA. The effect of some important parameters on pDNA yield was also evaluated with the aim of optimising the affinity purification of pDNA. The results demonstrate that 81% of pDNA was recovered and contaminating gDNA, RNA and protein were removed below detectable levels. © 2008 Elsevier B.V. All rights reserved.
Resumo:
The extent of exothermicity associated with the construction of large-volume methacrylate monolithic columns has somewhat obstructed the realisation of large-scale rapid biomolecule purification especially for plasmid-based products which have proven to herald future trends in biotechnology. A novel synthesis technique via a heat expulsion mechanism was employed to prepare a 40 mL methacrylate monolith with a homogeneous radial pore structure along its thickness. Radial temperature gradient was recorded to be only 1.8 °C. Maximum radial temperature recorded at the centre of the monolith was 62.3 °C, which was only 2.3 °C higher than the actual polymerisation temperature. Pore characterisation of the monolithic polymer showed unimodal pore size distributions at different radial positions with an identical modal pore size of 400 nm. Chromatographic characterisation of the polymer after functionalisation with amino groups displayed a persistent dynamic binding capacity of 15.5 mg of plasmid DNA/mL. The maximum pressure drop recorded was only 0.12 MPa at a flow rate of 10 mL/min. The polymer demonstrated rapid separation ability by fractionating Escherichia coli DH5α-pUC19 clarified lysate in only 3 min after loading. The plasmid sample collected after the fast purification process was tested to be a homogeneous supercoiled plasmid with DNA electrophoresis and restriction analysis.
Resumo:
A novel method has been developed to synthesize mesoporous silica spheres using commercial silica colloids (SNOWTEX) as precursors and electrolytes (ammonium nitrate and sodium chloride) as destabilizers. Crosslinked polyacrylamide hydrogel was used as a temporary barrier to obtain dispersible spherical mesoporous silica particles. The influences of synthesis conditions including solution composition and calcination temperature on the formation of the mesoporous silica particles were systematically investigated. The structure and morphology of the mesoporous silica particles were characterized via scanning electron microscopy (SEM) and N2 sorption technique. Mesoporous silica particles with particle diameters ranging from 0.5 to 1.6 μm were produced whilst the BET surface area was in the range of 31-123 m2 g-1. Their pore size could be adjusted from 14.1 to 28.8 nm by increasing the starting particle diameter from 20-30 nm up to 70-100 nm. A simple and cost effective method is reported that should open up new opportunities for the synthesis of scalable host materials with controllable structures.
Resumo:
High-throughput plasmid DNA (pDNA) manufacture is obstructed predominantly by the performance of conventional stationary phases. For this reason, the search for new materials for fast chromatographic separation of pDNA is ongoing. A poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (GMA-EGDMA) monolithic material was synthesised via a thermal-free radical reaction, functionalised with different amino groups from urea, 2-chloro-N,N-diethylethylamine hydrochloride (DEAE-Cl) and ammonia in order to investigate their plasmid adsorption capacities. Physical characterisation of the monolithic polymer showed a macroporous polymer having a unimodal pore size distribution pivoted at 600 nm. Chromatographic characterisation of the functionalised polymers using pUC19 plasmid isolated from E. coli DH5α-pUC19 showed a maximum plasmid adsorption capacity of 18.73 mg pDNA/mL with a dissociation constant (KD) of 0.11 mg/mL for GMA-EGDMA/DEAE-Cl polymer. Studies on ligand leaching and degradation demonstrated the stability of GMA-EGDMA/DEAE-Cl after the functionalised polymers were contacted with 1.0 M NaOH, which is a model reagent for most 'cleaning in place' (CIP) systems. However, it is the economic advantage of an adsorbent material that makes it so attractive for commercial purification purposes. Economic evaluation of the performance of the functionalised polymers on the grounds of polymer cost (PC)/mg pDNA retained endorsed the suitability of GMA-EGDMA/DEAE-Cl polymer.
Resumo:
The creation of a commercially viable and a large-scale purification process for plasmid DNA (pDNA) production requires a whole-systems continuous or semi-continuous purification strategy employing optimised stationary adsorption phase(s) without the use of expensive and toxic chemicals, avian/bovine-derived enzymes and several built-in unit processes, thus affecting overall plasmid recovery, processing time and economics. Continuous stationary phases are known to offer fast separation due to their large pore diameter making large molecule pDNA easily accessible with limited mass transfer resistance even at high flow rates. A monolithic stationary sorbent was synthesised via free radical liquid porogenic polymerisation of ethylene glycol dimethacrylate (EDMA) and glycidyl methacrylate (GMA) with surface and pore characteristics tailored specifically for plasmid binding, retention and elution. The polymer was functionalised with an amine active group for anion-exchange purification of pDNA from cleared lysate obtained from E. coli DH5α-pUC19 pellets in RNase/protease-free process. Characterization of the resin showed a unique porous material with 70% of the pores sizes above 300 nm. The final product isolated from anion-exchange purification in only 5 min was pure and homogenous supercoiled pDNA with no gDNA, RNA and protein contamination as confirmed with DNA electrophoresis, restriction analysis and SDS page. The resin showed a maximum binding capacity of 15.2 mg/mL and this capacity persisted after several applications of the resin. This technique is cGMP compatible and commercially viable for rapid isolation of pDNA.