919 resultados para PULMONARY-EMBOLISM
Resumo:
Amylase activity in exhaled breath condensate (EBC) is usually interpreted as an indication of oropharyngeal contamination despite the fact that amylase can be found in pulmonary excretions. The aim of this study was to recruit and refine an amylase assay in order to detect amylase activity in any EBC sample and to develop a method to identify EBC samples containing amylase of pulmonary origin. EBC was collected from 40 volunteers with an EcoScreen condenser. Amylase assays and methods to discriminate between oropharyngeal and pulmonary proteins were tested and developed using matched EBC and saliva samples. Our refined 2-chloro-4-nitrophenyl-α-D-maltotriosid (CNP-G3) assay was 40-fold more sensitive than the most sensitive commercial assay and allowed detection of amylase activity in 30 µl of EBC. We developed a dot-blot assay which allowed detection of salivary protein in saliva diluted up to 150 000-fold. By plotting amylase activity against staining intensity we identified a few EBC samples with high amylase activity which were aligned with diluted saliva. We believe that EBC samples aligned with diluted saliva contain amylase activity introduced during EBC collection and that all other EBC samples contain amylase activity of pulmonary origin and are basically free of oropharyngeal protein contamination.
MEN1 Gene Mutation and Reduced Expression Are Associated With Poor Prognosis in Pulmonary Carcinoids
Resumo:
Context: MEN1 gene alterations have been implicated in lung carcinoids, but their effect on gene expression and disease outcome is unknown. Objective: Our objective was to analyze MEN1 gene and expression anomalies in lung neuroendocrine neoplasms and their correlations with clinicopathologic data and disease outcome. Design: We examined 74 lung neuroendocrine neoplasms including 58 carcinoids and 16 high-grade neuroendocrine carcinomas (HGNECs) for MEN1 mutations (n = 70) and allelic losses (n = 69), promoter hypermethylation (n = 65), and mRNA (n = 74) expression. Results were correlated with disease outcome. Results: MEN1 mutations were found in 7 of 55 (13%) carcinoids and in 1 HGNEC, mostly associated with loss of the second allele. MEN1 decreased expression levels correlated with the presence of mutations (P = .0060) and was also lower in HGNECs than carcinoids (P = .0024). MEN1 methylation was not associated with mRNA expression levels. Patients with carcinoids harboring MEN1 mutation and loss had shorter overall survival (P = .039 and P = .035, respectively) and low MEN1 mRNA levels correlated with distant metastasis (P = .00010) and shorter survival (P = .0071). In multivariate analysis, stage and MEN1 allelic loss were independent predictors of prognosis. Conclusion: Thirteen percent of pulmonary carcinoids harbor MEN1 mutation associated with reduced mRNA expression and poor prognosis. Also in mutation-negative tumors, low MEN1 gene expression correlates with an adverse disease outcome. Hypermethylation was excluded as the underlying mechanism.
Resumo:
The new Swiss Chronic Obstructive Pulmonary Disease (COPD) Guidelines are based on a previous version, which was published 10 years ago. The Swiss Respiratory Society felt the need to update the previous document due to new knowledge and novel therapeutic developments about this prevalent and important disease. The recommendations and statements are based on the available literature, on other national guidelines and, in particular, on the GOLD (Global Initiative for Chronic Obstructive Lung Disease) report. Our aim is to advise pulmonary physicians, general practitioners and other health care workers on the early detection and diagnosis, prevention, best symptomatic control, and avoidance of COPD as well as its complications and deterioration.
Resumo:
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is characterized by formation and proliferation of fibroblast foci. Endothelin-1 induces lung fibroblast proliferation and contractile activity via the endothelin A (ETA) receptor. OBJECTIVE To determine whether ambrisentan, an ETA receptor-selective antagonist, reduces the rate of IPF progression. DESIGN Randomized, double-blind, placebo-controlled, event-driven trial. (ClinicalTrials.gov: NCT00768300). SETTING Academic and private hospitals. PARTICIPANTS Patients with IPF aged 40 to 80 years with minimal or no honeycombing on high-resolution computed tomography scans. INTERVENTION Ambrisentan, 10 mg/d, or placebo. MEASUREMENTS Time to disease progression, defined as death, respiratory hospitalization, or a categorical decrease in lung function. RESULTS The study was terminated after enrollment of 492 patients (75% of intended enrollment; mean duration of exposure to study medication, 34.7 weeks) because an interim analysis indicated a low likelihood of showing efficacy for the end point by the scheduled end of the study. Ambrisentan-treated patients were more likely to meet the prespecified criteria for disease progression (90 [27.4%] vs. 28 [17.2%] patients; P = 0.010; hazard ratio, 1.74 [95% CI, 1.14 to 2.66]). Lung function decline was seen in 55 (16.7%) ambrisentan-treated patients and 19 (11.7%) placebo-treated patients (P = 0.109). Respiratory hospitalizations were seen in 44 (13.4%) and 9 (5.5%) patients in the ambrisentan and placebo groups, respectively (P = 0.007). Twenty-six (7.9%) patients who received ambrisentan and 6 (3.7%) who received placebo died (P = 0.100). Thirty-two (10%) ambrisentan-treated patients and 16 (10%) placebo-treated patients had pulmonary hypertension at baseline, and analysis stratified by the presence of pulmonary hypertension revealed similar results for the primary end point. LIMITATION The study was terminated early. CONCLUSION Ambrisentan was not effective in treating IPF and may be associated with an increased risk for disease progression and respiratory hospitalizations. PRIMARY FUNDING SOURCE Gilead Sciences.
Resumo:
BACKGROUND Multidetector computed tomography (MDCT) may be useful to identify patients with patent foramen ovale (PFO). The aim of this study was to analyze whether a MDCT performed before pulmonary vein isolation reliably detects a PFO that may be used for access to the left atrium. METHODS AND RESULTS In 79 consecutive patients, who were referred for catheter ablation of symptomatic paroxysmal or persistent atrial fibrillation (AF), the presence of a PFO was explored by MDCT and transesophageal echocardiography (TEE). TEE was considered as the gold standard, and quality of TEE was good in all patients. In 16 patients (20.3%), MDCT could not be used for analysis because of artifacts, mainly because of AF. On TEE, a PFO was found in 15 (23.8%) of the 63 patients with usable MDCT. MDCT detected six PFO of which four were present on TEE. This corresponded to a sensitivity of 26.7%, a specificity of 95.8%, a negative predictive value of 80.7%, and a positive predictive value of 66.7%. The receiver operating characteristics curve of MDCT for the detection of PFO was 0.613 (95% confidence interval 0.493-0.732). CONCLUSIONS MDCT may detect a PFO before pulmonary isolation. However, presence of AF may lead to artifacts on MDCT impeding a meaningful analysis. Furthermore, in this study sensitivity and positive predictive value of MDCT were low and therefore MDCT was not a reliable screening tool for detection of PFO.
Resumo:
BACKGROUND The use of reduced-size adult lung transplants could help solve the profound pediatric donor lung shortage. However, adequate long-term function of the mature grafts requires growth in proportion to the recipient's development. METHODS Mature left lower lobes from adult mini-pigs (age: 7 months; mean body weight: 30 kg) were transplanted into 14-week-old piglets (mean body weight: 15 kg). By the end of the 14-week holding period, lungs of the recipients (n = 4) were harvested. After volumetric measurements, the lung morphology was studied using light microscopy, scanning, and transmission electron microscopy. Changes of alveolar airspace volume were determined using a computer aided image analysis system. Comparisons were made to age- and weight-matched controls. RESULTS Volumetric studies showed no significant differences (p = 0.49) between the specific volume (mL/kg body weight) of lobar grafts and left lower lobes of adult controls. Morphologic studies showed marked structural differences between the grafts and the right native lungs of the recipients, with increased average alveolar diameter of the grafts. On light microscopy and scanning electron microscopy, alveoli appeared dilated and rounded compared to the normal polygonal shape in the controls. The computer generated semi-quantitative data of relative alveolar airspace volume tended to be higher in transplanted lobes. CONCLUSIONS The mature pulmonary lobar grafts have filled the growing left hemithorax of the developing recipient. Emphysema-like alterations of the grafts were observed without evidence of alveolar growth in the mature lobar transplants. Thus, it can be questioned whether mature pulmonary grafts can guarantee sufficient long-term gas exchange in growing recipients.
Resumo:
The Pulmonary route has been traditionally used to treat diseases of the respiratory tract. However, important research within the last two decades have shown that in addition to treating local diseases, a wide range of systemic diseases can be treated by delivering drugs to the lungs. The recent FDA approval to market Exubera, an inhalable form of insulin developed by Pfizer, to treat Diabetes, may just be the stepping stone that the pharmaceutical industry needs to market other drugs to treat systemic diseases via the lungs. However, this technology still needs repeated drug doses to control glucose levels, as the inhaled drug is cleared rapidly. Technologies have been developed where inhaled particles are capable of controlled release of drug from the lungs. An important feature of these technologies is the large geometric size of the particles that makes it difficult for the lung macrophages to clear these particles, which results in longer residence times for the particles in the lungs. Owing to the porosity, these particles have lower densities making them deliverable to the deep lungs. However, no modulation of drug release can be achieved with these technologies when more drug release may be required. This additional requirement can only be assuaged by additional dosing of the drug formulation, which can have undesirable effects due to excess loading of excipients in the lungs. In an attempt to bring about modulation of release from long residence time particles, a novel concept was developed in our laboratory that has been termed as the Agglomerated Vesicle Technology (AVT). Liposomes with encapsulated drug were agglomerated using well known cross linking chemistries to form agglomerates in the micron sized range. The large particles exhibited aerodynamic sizes in the respirable size range with minimal damage to the particles upon nebulization. By breaking the cross links between the liposomes with a cleaving agent, it was anticipated that triggered release of drug from the AVT particles could be achieved. In vivo studies done in healthy rabbits showed that post-administration modulation of drug release is possible from the AVT particles after the introduction of the cleaving agent. This study has important implications for the future development of this technology, where the AVT particles can be made “sensitive” to the product of disease. It is envisaged that a single dose of AVT containing the appropriate drug when administered to the lungs would maintain drug levels at a controlled rate over an extended period of time. When the need for more drug arises, the product of the disease would trigger the AVT particles to release more drug as needed to control the condition, thus eliminating the need for repeated drug doses and improved compliance amongst patients.
Resumo:
IMPORTANCE International guidelines advocate a 7- to 14-day course of systemic glucocorticoid therapy in acute exacerbations of chronic obstructive pulmonary disease (COPD). However, the optimal dose and duration are unknown. OBJECTIVE To investigate whether a short-term (5 days) systemic glucocorticoid treatment in patients with COPD exacerbation is noninferior to conventional (14 days) treatment in clinical outcome and whether it decreases the exposure to steroids. DESIGN, SETTING, AND PATIENTS REDUCE: (Reduction in the Use of Corticosteroids in Exacerbated COPD), a randomized, noninferiority multicenter trial in 5 Swiss teaching hospitals, enrolling 314 patients presenting to the emergency department with acute COPD exacerbation, past or present smokers (≥20 pack-years) without a history of asthma, from March 2006 through February 2011. INTERVENTIONS Treatment with 40 mg of prednisone daily for either 5 or 14 days in a placebo-controlled, double-blind fashion. The predefined noninferiority criterion was an absolute increase in exacerbations of at most 15%, translating to a critical hazard ratio of 1.515 for a reference event rate of 50%. MAIN OUTCOME AND MEASURE Time to next exacerbation within 180 days. RESULTS Of 314 randomized patients, 289 (92%) of whom were admitted to the hospital, 311 were included in the intention-to-treat analysis and 296 in the per-protocol analysis. Hazard ratios for the short-term vs conventional treatment group were 0.95 (90% CI, 0.70 to 1.29; P = .006 for noninferiority) in the intention-to-treat analysis and 0.93 (90% CI, 0.68 to 1.26; P = .005 for noninferiority) in the per-protocol analysis, meeting our noninferiority criterion. In the short-term group, 56 patients (35.9%) reached the primary end point; 57 (36.8%) in the conventional group. Estimates of reexacerbation rates within 180 days were 37.2% (95% CI, 29.5% to 44.9%) in the short-term; 38.4% (95% CI, 30.6% to 46.3%) in the conventional, with a difference of -1.2% (95% CI, -12.2% to 9.8%) between the short-term and the conventional. Among patients with a reexacerbation, the median time to event was 43.5 days (interquartile range [IQR], 13 to 118) in the short-term and 29 days (IQR, 16 to 85) in the conventional. There was no difference between groups in time to death, the combined end point of exacerbation, death, or both and recovery of lung function. In the conventional group, mean cumulative prednisone dose was significantly higher (793 mg [95% CI, 710 to 876 mg] vs 379 mg [95% CI, 311 to 446 mg], P < .001), but treatment-associated adverse reactions, including hyperglycemia and hypertension, did not occur more frequently. CONCLUSIONS AND RELEVANCE In patients presenting to the emergency department with acute exacerbations of COPD, 5-day treatment with systemic glucocorticoids was noninferior to 14-day treatment with regard to reexacerbation within 6 months of follow-up but significantly reduced glucocorticoid exposure. These findings support the use of a 5-day glucocorticoid treatment in acute exacerbations of COPD. TRIAL REGISTRATION isrctn.org Identifier: ISRCTN19646069.
Resumo:
BACKGROUND: Inhalative nanocarriers for local or systemic therapy are promising. Gold nanoparticles (AuNP) have been widely considered as candidate material. Knowledge about their interaction with the lungs is required, foremost their uptake by surface macrophages and epithelial cells.Diseased lungs are of specific interest, since these are the main recipients of inhalation therapy. We, therefore, used Scnn1b-transgenic (Tg) mice as a model of chronic obstructive pulmonary disease (COPD) and compared uptake and localization of inhaled AuNP in surface macrophages and lung tissue to wild-type (Wt) mice. METHODS: Scnn1b-Tg and Wt mice inhaled a 21-nm AuNP aerosol for 2 h. Immediately (0 h) or 24 h thereafter, bronchoalveolar lavage (BAL) macrophages and whole lungs were prepared for stereological analysis of AuNP by electron microscopy. RESULTS: AuNP were mainly found as singlets or small agglomerates of <= 100 nm diameter, at the epithelial surface and within lung-surface structures. Macrophages contained also large AuNP agglomerates (> 100 nm). At 0 h after aerosol inhalation, 69.2+/-4.9% AuNP were luminal, i.e. attached to the epithelial surface and 24.0+/-5.9% in macrophages in Scnn1b-Tg mice. In Wt mice, 35.3+/-32.2% AuNP were on the epithelium and 58.3+/-41.4% in macrophages. The percentage of luminal AuNP decreased from 0 h to 24 h in both groups. At 24 h, 15.5+/-4.8% AuNP were luminal, 21.4+/-14.2% within epithelial cells and 63.0+/-18.9% in macrophages in Scnn1b-Tg mice. In Wt mice, 9.5+/-5.0% AuNP were luminal, 2.2+/-1.6% within epithelial cells and 82.8+/-0.2% in macrophages. BAL-macrophage analysis revealed enhanced AuNP uptake in Wt animals at 0 h and in Scnn1b-Tg mice at 24 h, confirming less efficient macrophage uptake and delayed clearance of AuNP in Scnn1b-Tg mice. CONCLUSIONS: Inhaled AuNP rapidly bound to the alveolar epithelium in both Wt and Scnn1b-Tg mice. Scnn1b-Tg mice showed less efficient AuNP uptake by surface macrophages and concomitant higher particle internalization by alveolar type I epithelial cells compared to Wt mice. This likely promotes AuNP depth translocation in Scnn1b-Tg mice, including enhanced epithelial targeting. These results suggest AuNP nanocarrier delivery as successful strategy for therapeutic targeting of alveolar epithelial cells and macrophages in COPD.
Resumo:
Adenosine has been implicated in the pathogenesis of chronic lung diseases such as asthma and chronic obstructive pulmonary disease. In vitro studies suggest that activation of the A2B adenosine receptor (A2BAR) results in proinflammatory and profibrotic effects relevant to the progression of lung diseases; however, in vivo data supporting these observations are lacking. Adenosine deaminase-deficient (ADA-deficient) mice develop pulmonary inflammation and injury that are dependent on increased lung adenosine levels. To investigate the role of the A2BAR in vivo, ADA-deficient mice were treated with the selective A2BAR antagonist CVT-6883, and pulmonary inflammation, fibrosis, and airspace integrity were assessed. Untreated and vehicle-treated ADA-deficient mice developed pulmonary inflammation, fibrosis, and enlargement of alveolar airspaces; conversely, CVT-6883-treated ADA-deficient mice showed less pulmonary inflammation, fibrosis, and alveolar airspace enlargement. A2BAR antagonism significantly reduced elevations in proinflammatory cytokines and chemokines as well as mediators of fibrosis and airway destruction. In addition, treatment with CVT-6883 attenuated pulmonary inflammation and fibrosis in wild-type mice subjected to bleomycin-induced lung injury. These findings suggest that A2BAR signaling influences pathways critical for pulmonary inflammation and injury in vivo. Thus in chronic lung diseases associated with increased adenosine, antagonism of A2BAR-mediated responses may prove to be a beneficial therapy.
Resumo:
Adenosine is a purinergic signaling molecule that regulates various aspects of inflammation and has been implicated in the pathogenesis of chronic lung diseases. Previous studies have demonstrated that adenosine up-regulates IL-6 production through the engagement of the A2B adenosine receptor in various cell types, including alveolar macrophages. IL-6 is elevated in mouse models and humans with chronic lung disease, suggesting a potential role in disease progression. Furthermore, chronic elevation of adenosine in the lungs of adenosine deaminase deficient (Ada-/-) mice leads to the development of pulmonary inflammation, alveolar destruction, and fibrosis, in conjunction with IL-6 elevation. Thus, it was hypothesized that IL-6 contributes to pulmonary inflammation and fibrosis in this model. To test this hypothesis, Ada/IL-6 double knockout mice (Ada/IL-6-/-) were generated to assess the consequences of genetically removing IL-6 on adenosine-dependent pulmonary injury. Ada/IL-6-/- mice exhibited a significant reduction in inflammation, alveolar destruction, and pulmonary fibrosis. Next, Ada-/- mice were treated systematically with IL-6 neutralizing antibodies to test the efficacy of blocking IL-6 on chronic lung disease. These treatments were associated with decreased pulmonary inflammation, alveolar destruction, and fibrosis. To determine the role of IL-6 in a second model of pulmonary fibrosis, wild type mice and IL-6-/- mice were subjected to intraperitoneal injections of bleomycin twice a week for four weeks. Results demonstrated that IL-6-/- mice developed reduced pulmonary fibrosis. To examine a therapeutic approach in this model, wild type mice exposed to bleomycin were treated with IL-6 neutralizing antibodies. Similar results were observed as with Ada-/- mice, namely diminished pulmonary inflammation and fibrosis. In both models, elevations in IL-6 were associated with increased phosphorylated STAT-3 in the nuclei of numerous cell types in the airways, including type II alveolar epithelial cells (AEC). Genetic removal and neutralization of IL-6 in both models was associated with decreased STAT-3 activation in type II AEC. The mechanism of activation in these cells that lack the membrane bound IL-6Ra suggests IL-6 trans-signaling may play a role in regulating fibrosis. Characterization of this mechanism demonstrated that the soluble IL-6Ra (sIL-6Ra) is upregulated in both models during chronic conditions. In vitro studies in MLE-12 alveolar epithelial cells confirmed that IL-6, in combination with the sIL-6Ra, activates STAT-3 and TWIST in association with enhancement of epithelial-to-mesenchymal transition, which can contribute to fibrosis. Similarly, patients with idiopathic pulmonary fibrosis demonstrated a similar pattern of increased IL-6 expression, STAT-3 activation, and sIL-6Ra increases. These findings demonstrate that adenosine-dependent elevations in IL-6 contribute to the development and progression of pulmonary inflammation and fibrosis. The implications from these studies are that adenosine and/or IL-6 neutralizing agents represent novel therapeutic targets for the treatment of pulmonary disorders where fibrosis is a detrimental component.
Resumo:
Radiotherapy involving the thoracic cavity and chemotherapy with the drug bleomycin are both dose limited by the development of pulmonary fibrosis. From evidence that there is variation in the population in susceptibility to pulmonary fibrosis, and animal data, it was hypothesized that individual variation in susceptibility to bleomycin-induced, or radiation-induced, pulmonary fibrosis is, in part, genetically controlled. In this thesis a three generation mouse genetic model of C57BL/6J (fibrosis prone) and C3Hf/Kam (fibrosis resistant) mouse strains and F1 and F2 (F1 intercross) progeny derived from the parental strains was developed to investigate the genetic basis of susceptibility to fibrosis. In the bleomycin studies the mice received 100 mg/kg (125 for females) of bleomycin, via mini osmotic pump. The animals were sacrificed at eight weeks following treatment or when their breathing rate indicated respiratory distress. In the radiation studies the mice were given a single dose of 14 or 16 Gy (Co$\sp{60})$ to the whole thorax and were sacrificed when moribund. The phenotype was defined as the percent of fibrosis area in the left lung as quantified with image analysis of histological sections. Quantitative trait loci (QTL) mapping was used to identify the chromosomal location of genes which contribute to susceptibility to bleomycin-induced pulmonary fibrosis in C57BL/6J mice compared to C3Hf/Kam mice and to determine if the QTL's which influence susceptibility to bleomycin-induced lung fibrosis in these progenitor strains could be implicated in susceptibility to radiation-induced lung fibrosis. For bleomycin, a genome wide scan revealed QTL's on chromosome 17, at the MHC, (LOD = 11.7 for males and 7.2 for females) accounting for approximately 21% of the phenotypic variance, and on chromosome 11 (LOD = 4.9), in male mice only, adding 8% of phenotypic variance. The bleomycin QTL on chromosome 17 was also implicated for susceptibility to radiation-induced fibrosis (LOD = 5.0) and contributes 7% of the phenotypic variance in the radiation study. In conclusion, susceptibility to both bleomycin-induced and radiation-induced pulmonary fibrosis are heritable traits, and are influenced by a genetic factor which maps to a genomic region containing the MHC. ^
Resumo:
Objective. To investigate the association of the three major genetic groups of Mycobacterium tuberculosis with pulmonary and extra-pulmonary tuberculosis in clustered and non-clustered TB cases in the Houston area. ^ Study design. Secondary analysis of an ambi-directional study. ^ Study population. Three hundred fifty-eight confirmed cases of tuberculosis in the Houston that occurred between October 1995 and May 1997, who had been interviewed by the Houston T13 Initiative staff at Baylor College of Medicine, and whose isolates have had their DNA fingerprint and genetic group determined. ^ Exclusions. Individuals whose mycobacterial genotype was unknown, or whose data variables were unavailable. ^ Source of data. Laboratory results, patient interviews, and medical records at clinics and hospitals of the study population. ^ Results. In clustered cases, the majority of both, pulmonary and extra-pulmonary TB cases were caused by genetic group 1. Independent factors were assessed to determine the interactions that may influence the site of infection or increase the risk for one site or another. HIV negative males were protected against extra-pulmonary TB compared to HIV negative females. Individuals ages 1–14 years were at higher risk of having extra-pulmonary TB. Group 3 organisms were found less frequently in the total population in general, especially in extra-pulmonary disease. This supports the evidence in previous studies that this group is the least virulent and genetically distinct from the other two groups. Group 1 was found more frequently among African Americans than other ethnic groups, a trend for future investigations. ^ Among the non-clustered cases, group 2 organisms were the majority of the organisms found in both sites. They were also the majority of organisms found in African Americans, Caucasians, and Hispanics causing the majority of the infections at both sites. However, group 1 organisms were the overwhelming majority found in Asian/Pacific Islander individuals, which may indicate these organisms are either endemic to that area, or that there is an ethnic biological factor involved. This may also be due to a systematic bias, since isolates from individuals from that geographic region lack adequate copies of the insertion sequence IS6110, which leads to their placement in the non-clustered population. ^ The three genetic groups of Mycobacterium tuberculosis were not found equally distributed between sites of infection in both clustered and non-clustered cases. Furthermore, these groups were not distributed in the same patterns among the clustered and non-clustered cases, but rather in distinct patterns. ^