958 resultados para OCEAN EDDY
Resumo:
[EN]The dark ocean, the waters below 200 m depth, comprises about 95% of the volume of the ocean, but its contribution to the metabolism of the ocean is poorly quantified. Here we show that the respiration rate of microplankton declines exponentially at a rate of 0.53 km−1 in the dark ocean, and is enhanced at the interface between the mesopelagic and the abyssal layers (1,000–2,000 m). The respiratory CO2 production in the dark ocean, estimated at 20 to 33.3 Gt C yr−1, renders it a major component of the carbon flux in the biosphere.
Resumo:
[EN]Here we provide evidence, based on prokaryote metabolic proxies and direct estimates of oxygen consumption, that the mesopelagic prokaryote assemblage in the subtropical Northeast Atlantic is an active one. It supports a high respiration (0.22 ± 0.05 μmol O2 l−1 d−1, corresponding to 68 ± 8 mmol CO2 m−2 d−1), comparable to that of the epipelagic zone during the same period (64–97 mmol C m−2 d−1). Our findings suggest that mesopelagic prokaryotes in the NE subtropical Ocean, as well as in other eastern boundary regions, are important carbon sinks for organic matter advected from the highly productive coastal systems, and would play a key role in the global carbon cycle of the oceans.
Resumo:
[EN]Oceanic eddy generation by tall deep-water islands is common phenomenon. It is recognized that these eddies may have a significant impact on the marine system and related biogeochemical fluxes. Hence, it is important to establish favourable conditions for their generation. With this objective, we present an observational study on eddy generation mechanisms by tall deep-water islands, using as a case study the island of Gran Canaria. Observations show that the main generation mechanism is topographic forcing, which leads to eddy generation when the incident oceanic flow is sufficiently intense. Wind shear at the island wake may acts only as an additional eddy-generation trigger mechanism when the impinging oceanic flow is not sufficiently intense. For the case of the island of Gran Canaria we have observed a mean of ten generated cyclonic eddies per year. Eddies are more frequently generated in summer coinciding with intense Trade winds and Canary Current.
Resumo:
[EN] In order to establish the potential role of Antarctic krill (Euphausia superba) in the recycling of bioactive elements, we have quantified the release of iron, phosphate, and ammonia by these organisms along the Antarctic Peninsula sector of the Southern Ocean. The experimental results suggested that the presence of krill has a significant impact on ambient iron concentrations, as large amounts of this trace element were released by the krill (22–689 nmol Fe g Dry Weight−1 h−1, equivalent to 0.2 to 4.3 nmol Fe L−1 d−1). Half of this iron release occurred within the first hour of the experiment, and differences in iron and phosphate release rates (3.1 to 14.0 μmol PO43− g DW−1 h−1) seemed to reflect differences in food availability. These results identify krill as a major node in iron cycling in the Southern Ocean, potentially influencing iron residence time in the upper water column of this region.
Resumo:
[EN] Here we present results from sediment traps that separate particles as a function of their settling velocity, which were moored in the Canary Current region over a 1.5-year period. This study represents the longest time series using “in situ” particle settling velocity traps to date and are unique in providing year-round estimates. We find that, at least during half of the year in subtropical waters (the largest ocean domain), more than 60% of total particulate organic carbon is contained in slowly settling particles (0.7–11 m d−1). Analyses of organic biomarkers reveal that these particles have the same degradation state, or are even fresher than rapidly sinking particles. Thus, if slowly settling particles dominate the exportable carbon pool, most organic matter would be respired in surface waters, acting as a biological source of CO2 susceptible to exchange with the atmosphere. In the context of climate change, if the predicted changes in phytoplankton community structure occur, slowly settling particles would be favored, affecting the strength of the biological pump in the ocean.
Resumo:
[EN]The capacity of the ocean to sequester atmospheric carbon (CO2) depends to a large extent on the dynamics of biogenic carbon in the water column. However, most current global and regional estimates of carbon balances are solely based on particles collected with drifting and moored sediment traps. As a consequence, construction of ocean carbon budgets has long been guided by the simplification introduced by sediment traps, which give a 1D vision of the whole picture. In this thesis we have assessed a quantitative analysis of the flux magnitude and the mechanisms of transport of the whole particle spectrum (suspended, slowly-sinking and sinking particles).
Resumo:
[EN]Coastal upwelling in the eastern margin and offshore curl-driven upwelling in the southeastern margin, make the subtropical Northeast Atlantic a region of major primary productivity. When examining a broad zonal area, from the coast to 40_W, we find that the upward transport of nutrients due to offshore curl-driven upwelling becomes the main control on productivity. Nevertheless, despite its relatively small zonal extension of about 100 km, coastal upwelling extends its impact towards the open ocean through offshore Ekman transport and convergence of the meridional flow at Cape Blanc (21_N).
Resumo:
[EN]The increase in the anthropogenic CO2 released to the atmosphere, induces an increase in the dissolved CO2 in the ocean, causing elevated pCO2 values and a pH decrease. Due to the increasing atmospheric CO2, several on-going research programs are evaluating the impact of acidification on marine organisms, intent to predict their future. In this mesocosm experiment (KOSMOS 14GC), we assessed the effect of different CO2 concentrations on metabolism in microplankton (0.7-50μm size) and in biogenic particles harvested by sediment traps.
Resumo:
Programa de doctorado, Oceanografía ; 2004-2006
Resumo:
Die Isotopenzusammensetzungen des Pitcairn Hotspot (Südpazifik), des Mauna Kea (Hawaii) und der Insel Rurutu (Französisch Polynesien) wurden bestimmt, um Heterogenitäten im Erdmantel zu charakterisieren. Die Bleiisotopenzusammensetzung wurde mit einer Dreiisotopenspiketechnik zur Korrektur der instrumentellen Massenfraktionierung gemessen. An Proben von Pitcairn wurde zusätzlich die Os, Hf, Nd, Sr Isotopenzusammensetzung, sowie die Haupt- und Spurenelementzusammensetzung bestimmt. Die Isotopensignatur des Pitcairn Hotspots kann durch eine Sedimentkomponente in der Magmenquelle erklärt werden. Die Bleiisotopenschwankungen des Mauna Kea in der HSDP-2 Bohrung treten als Oszillationen auf, die sich zu linearen Anordnungen im Bleiisotopenraum zusammensetzen. Das begrenzte zeitliche Auftreten einer linearen Anordnung zeigt, daß die Heterogenitäten mehrere zehner Kilometer Länge im aufsteigenden Mantelmaterial unter dem Vulkan einnehmen. Auch die Bleiisotopenzusammensetzungen der Rurutu-laven zeigen lineare Anordnungen.Diese lineare Anordnungen im Bleiisotopenraum können durch eine vorwiegend binäre Mischung erklärt werden. Ein Bleiisotopenentwicklungsmodell unterstützt, daß die Differenzierung der Ausgangsmaterialien vor weniger als etwa zwei Milliarden Jahren geschah und für Mauna Kea relativ jung sein könnte. Keine der Hotspots weisen identische Mischungsendglieder auf, so daß die Heterogenitäten kleinräumige Merkmale im Erdmantel sind.
Resumo:
Since the industrial revolution, the ocean has absorbed around one third of the anthropogenic CO2, which induced a profound alteration of the carbonate system commonly known as ocean acidification. Since the preindustrial times, the average ocean surface water pH has fallen by 0.1 units, from approximately 8.2 to 8.1 and a further decrease of 0.4 pH units is expected for the end of the century. Despite their microscopic size, marine diatoms are bio-geo-chemically a very important group, responsible for the export of massive amount of carbon to deep waters and sediments. The knowledge of the potential effects of ocean acidification on the phytoplankton growth and on biological pump is still at its infancy. This study wants to investigate the effect of ocean acidification on the growth of the diatom Skeletonema marinoi and on its aggregation, using a mechanistic approach. The experiment consisted of two treatments (Present and Future) representing different pCO2 conditions and two sequential experimental phases. During the cell growth phase a culture of S. marinoi was inoculated into transparent bags and the effect of ocean acidification was studied on various growth parameters, including DOC and TEP production. The aggregation phase consisted in the incubation of the cultures into rolling tanks where the sinking of particles through the water column was simulated and aggregation promoted. Since few studies investigated the effect of pH on the growth of S. marinoi and none used pH ranges that are compatible with the OA scenarios, there were no baselines. I have shown here, that OA does not affect the cell growth of S. marinoi, suggesting that the physiology of this species is robust in respect to the changes in the carbonate chemistry expected for the end of the century. Furthermore, according to my results, OA does not affect the aggregation of S. marinoi in a consistent manner, suggesting that this process has a high natural variability but is not influenced by OA in a predictable way. The effect of OA was tested over a variety of factors including the number of aggregates produced, their size and sinking velocity, the algal, bacterial and TEP content. Many of these variables showed significant treatment effects but none of these were consistent between the two experiments.
Resumo:
Most basaltic volcanoes are affected by recurrent lateral instabilities during their evolution. Numerous factors have been shown to be involved in the process of flank destabilization occurring over long periods of time or by instantaneous failures. However, the role of these factors on the mechanical behaviour and stability of volcanic edifices is poorly-constrained as lateral failure usually results from the combined effects of several parameters. Our study focuses on the morphological and structural comparison of two end-member basaltic systems, La Reunion (Indian ocean, France) and Stromboli (southern Tyrrhenian sea, Italy). We showed that despite major differences on their volumes and geodynamic settings, both systems present some similarities as they are characterized by an intense intrusive activity along well-developed rift zones and recurrent phenomena of flank collapse during their evolution. Among the factors of instability, the examples of la Reunion and Stromboli evidence the major contribution of intrusive complexes to volcano growth and destruction as attested by field observations and the monitoring of these active volcanoes. Classical models consider the relationship between vertical intrusions of magma and flank movements along a preexisting sliding surface. A set of published and new field data from Piton des Neiges volcano (La Reunion) allowed us to recognize the role of subhorizontal intrusions in the process of flank instability and to characterize the geometry of both subvertical and subhorizontal intrusions within basaltic edifices. This study compares the results of numerical modelling of the displacements associated with high-angle and low-angle intrusions within basaltic volcanoes. We use a Mixed Boundary Element Method to investigate the mechanical response of an edifice to the injection of magmatic intrusions in different stress fields. Our results indicate that the anisotropy of the stress field favours the slip along the intrusions due to cointrusive shear stress, generating flank-scale displacements of the edifice, especially in the case of subhorizontal intrusions, capable of triggering large-scale flank collapses on basaltic volcanoes. Applications of our theoretical results to real cases of flank displacements on basaltic volcanoes (such as the 2007 eruptive crisis at La Reunion and Stromboli) revealed that the previous model of subvertical intrusions-related collapse is a likely mechanism affecting small-scale steeply-sloping basaltic volcanoes like Stromboli. Furthermore, our field study combined to modelling results confirms the importance of shallow-dipping intrusions in the morpho-structural evolution of large gently-sloping basaltic volcanoes like Piton de la Fournaise, Etna and Kilauea, with particular regards to flank instability, which can cause catastrophic tsunamis.