968 resultados para Números. Sistema de numeração. Divisão de inteiros
Resumo:
Los números de Fibonacci han cautivado por muchos años al ser humano por sus aplicaciones en la vida cotidiana y en otras disciplinas. En este documento se presenta el origen de los números de Fibonacci, sus propiedades y su contribución a las matemáticas.
Resumo:
Soluciones a los ejercicios propuestos en el anterior NÚMEROS, con especial incidencia en la metodología de su resolución. Análisis de los problemas de la XX Olimpiada Nacional Matemática. Propuesta de nuevos enunciados. Ejercicios de diferentes niveles y contenidos.
Resumo:
Se analizan resultados de un estudio con alumnos de secundaria, en el que se utiliza un modelo virtual de la balanza para la enseñanza de la resolución de ecuaciones de primer grado. A diferencia del modelo concreto o diagramático, el modelo virtual es dinámico e interactivo y en su versión ampliada (balanza con poleas) incluye la representación y resolución de ecuaciones con sustracción de términos. Los resultados indican que al final del estudio, los alumnos logran extender el método algebraico de resolución a una variedad amplia de modalidades de ecuaciones y que de manera espontánea infieren el método de transposición de términos. Con el fin de investigar los procesos de producción de sentido y de construcción de significado, se adopta una perspectiva semiótica que incorpora al análisis las producciones sígnicas de los estudiantes, como parte de la interacción entre los sistemas de signos algebraico, aritmético y el sistema de signos del modelo.
Resumo:
En este artículo se muestran varias poesías que tienen a los números como protagonistas, escritas por autores tanto famosos como menos conocidos, españoles o extranjeros, con el objetivo de facilitar al profesor de Matemáticas de los niveles de Primaria, Secundaria y Bachillerato un no muy habitual recurso metodológico que pueda utilizar en sus clases para conseguir, por una parte, un mayor interés, gusto y motivación de sus alumnos por la asignatura, y por otra, para tratar las competencias socio-culturales, lingüísticas e idiomáticas que debe desarrollar en sus clases, permitiéndole de este modo la promoción de la interdisciplinaridad entre Lengua y Matemáticas, tan deseable para la formación global de sus alumnos.
Resumo:
Los números usualmente se han trabajado, tanto en los cursos de Primaria como en Secundaria, como instrumentos para realizar actividades en el aula sin tener en cuenta, en muchos casos, que se encuentran en el entorno y se utilizan usualmente en la vida cotidiana. Por ello se presentarán actividades extraídas de situaciones reales en que los números estén en contextos cotidianos que potencien la discusión, la toma de decisiones y que establezcan un enlace entre los centros educativos y el entorno. De esa manera se pretende reflexionar sobre el concepto de número en la práctica educativa diaria con la esperanza de que se considere un instrumento que facilite a los estudiantes vivir en su propio entorno y les ayude a desarrollarse como ciudadanos.
Resumo:
Presentamos los resultados de un estudio histórico sobre los cambios curriculares en libros de texto de matemáticas con la introducción del Sistema Métrico Decimal en España durante la segunda mitad del siglo XIX. El estudio se orientó por el método histórico y el Análisis Didáctico como herramienta para el estudio de libros de texto históricos. Esto ha permitido caracterizar la inclusión de este sistema metrológico en libros de texto para primaria, secundaria y la formación de maestros mediante la identificación y descripción de la estructura conceptual, los procedimientos, representaciones y contextos con que se incluyó a las unidades de pesas y medidas métrico-decimales en los tópicos de aritmética. El estudio proporciona antecedentes históricos e información relevante para comparar y caracterizar la enseñanza y el aprendizaje de la aritmética enfocando el SMD en el currículo español desde su implantación hasta la actualidad.
Resumo:
Presentamos una propuesta didáctica para utilizar la calculadora graficadora de una manera inteligente en el aula de matemáticas. Se propone en forma de prácticas de laboratorio a fin de favorecer la idea de un espacio para hacer matemáticas.
Resumo:
El presente trabajo expone ciertos aspectos de los números racionales e irracionales que generalmente son poco trabajados en las clases sobre los números reales en el bachillerato. La célebre paradoja de Aquiles y la tortuga sirve de pretexto para analizar a los números racionales y su periodicidad vía la noción de serie. Por lo que respecta a los números irracionales, la comparación del lado de un cuadrado y su diagonal nos sirven para introducir el concepto de inconmensurabilidad. Se presenta también un pequeño software, a manera de demo para apoyo de los temas tratados.
Resumo:
Dentro del contexto de las TIC aplicadas a la enseñanza de las matemáticas, se propone la introducción del sistema libre de cálculo simbólico Maxima, inicialmente desarrollado en el MIT. Maxima ofrece a estudiantes, profesores y profesionales un amplio conjunto de herramientas de cálculo, tanto simbólico como numérico, así como capacidades avanzadas de representación gráfica y un lenguaje de programación sencillo de aprender. También se incluyen ejemplos de actividades de aula reales.
Resumo:
Ya hace unos años A.K. Dewdney en su libro 200% de nada, se hacia eco de los curiosos usos sociales de los números donde se exagera la precisión de los mismos, en casos donde no tiene sentido (1.234.567 manifestantes, 345.674 peces en el lago, 14 horas 45 minutos 34 segundos andan- do,...), con vistas a dar una versión “mas científica” de la información que se desea transmitir. A este fenómeno lo bautizó Dewdney como “dramadigits”. Una conocida historia de John Allen Paulos es la del vigilante de un museo de ciencias naturales que estando ante un gran esqueleto de dinosaurio fue preguntado por unos visitantes sobre la antigüedad de aquellos restos y contestó con una sorprendente precisión: “90.000.006 años”. Extrañados los visitantes sobre los 6 años pidieron explicaciones al paciente guarda y éste respondió “cuando llegué aquí me dijeron que el dinosaurio tenia 90.000.000 de años y de esto ya hace 6 años”. En este clip me gustaría compartir algunas historias cuyo común denominador es este extraño sentido de la precisión.
Resumo:
El número de oro y el número plástico pertenecen a la clase de los números mórficos. En este artículo revisamos algunos aspectos históricos, presentamos algunas de sus propiedades y proponemos actividades sobre ellos, que permitirán trabajar transversalmente álgebra y geometría. Usando el lenguaje funcional como modelo de representación, los alumnos podrán conjeturar, de forma intuitiva, un resultado fundamental: Solo existen dos números mórficos, el número de oro y el número plástico.
Resumo:
El número de oro y el número plástico pertenecen a la clase de los números mórficos. En este artículo revisamos algunos aspectos históricos, presentamos algunas de sus propiedades y proponemos actividades sobre ellos, que permitirán trabajar transversalmente álgebra y geometría. Usando el lenguaje funcional como modelo de representación, los alumnos podrán conjeturar, de forma intuitiva, un resultado fundamental: “solo existen dos números mórficos, el número de oro y el número plástico”.
Resumo:
El trabajo que presentamos es una experiencia desarrollada por los autores y que consiste en trabajar a diferentes niveles (secundaria, bachillerato y universidad) los conceptos que, de forma natural, aparecen al utilizar la generalización como estrategia de resolución de problemas. Con esta estrategia y resolviendo problemas de los libros de texto de bachillerato, se estudian algunas propiedades de la teoría de números. Esta experiencia permite, además, realizar un trabajo interdisciplinar física-matemáticas.
Resumo:
El ajedrez puede constituir un excelente recurso didáctico en el aula de matemáticas. El presente trabajo trata sobre algunas de las conexiones que se pueden establecer entre estas dos disciplinas, y sobre la posibilidad de plantear problemas matemáticos tomando como soporte el tablero y las piezas de ajedrez. Los contenidos de los problemas son muy variados, manejando diversas cuestiones -algebraicas, combinatorias, geométricas, cálculo de probabilidades, de lógica, etc.-, que resultan especialmente motivadoras por el carácter lúdico y manipulativo que posee el juego de los 64 escaques.
Resumo:
En este trabajo nos proponemos abordar un problema clásico: la división de un segmento en media y extrema razón. Nuestro interés se centra en ilustrar, con un ejemplo sencillo, los sucesivos pasos a la hora de interpretar una magnitud: primero como una longitud, un área o un volumen; después como un segmento; y, por último, como un número. Evolución que refleja el proceso de creación de la geometría analítica. Por otro lado, estos tres periodos coinciden con las tres fases por las que pasa una disciplina matemática: ingenua, formal (en la que se perfecciona el cálculo simbólico) y una fase crítica (en la que se revisan los fundamentos).