832 resultados para Multi-platform Xamarin Mobile-computing
Resumo:
Cloud Computing is a paradigm that enables the access, in a simple and pervasive way, through the network, to shared and configurable computing resources. Such resources can be offered on demand to users in a pay-per-use model. With the advance of this paradigm, a single service offered by a cloud platform might not be enough to meet all the requirements of clients. Ergo, it is needed to compose services provided by different cloud platforms. However, current cloud platforms are not implemented using common standards, each one has its own APIs and development tools, which is a barrier for composing different services. In this context, the Cloud Integrator, a service-oriented middleware platform, provides an environment to facilitate the development and execution of multi-cloud applications. The applications are compositions of services, from different cloud platforms and, represented by abstract workflows. However, Cloud Integrator has some limitations, such as: (i) applications are locally executed; (ii) users cannot specify the application in terms of its inputs and outputs, and; (iii) experienced users cannot directly determine the concrete Web services that will perform the workflow. In order to deal with such limitations, this work proposes Cloud Stratus, a middleware platform that extends Cloud Integrator and offers different ways to specify an application: as an abstract workflow or a complete/partial execution flow. The platform enables the application deployment in cloud virtual machines, so that several users can access it through the Internet. It also supports the access and management of virtual machines in different cloud platforms and provides services monitoring mechanisms and assessment of QoS parameters. Cloud Stratus was validated through a case study that consists of an application that uses different services provided by different cloud platforms. Cloud Stratus was also evaluated through computing experiments that analyze the performance of its processes.
Resumo:
Cloud computing can be defined as a distributed computational model by through resources (hardware, storage, development platforms and communication) are shared, as paid services accessible with minimal management effort and interaction. A great benefit of this model is to enable the use of various providers (e.g a multi-cloud architecture) to compose a set of services in order to obtain an optimal configuration for performance and cost. However, the multi-cloud use is precluded by the problem of cloud lock-in. The cloud lock-in is the dependency between an application and a cloud platform. It is commonly addressed by three strategies: (i) use of intermediate layer that stands to consumers of cloud services and the provider, (ii) use of standardized interfaces to access the cloud, or (iii) use of models with open specifications. This paper outlines an approach to evaluate these strategies. This approach was performed and it was found that despite the advances made by these strategies, none of them actually solves the problem of lock-in cloud. In this sense, this work proposes the use of Semantic Web to avoid cloud lock-in, where RDF models are used to specify the features of a cloud, which are managed by SPARQL queries. In this direction, this work: (i) presents an evaluation model that quantifies the problem of cloud lock-in, (ii) evaluates the cloud lock-in from three multi-cloud solutions and three cloud platforms, (iii) proposes using RDF and SPARQL on management of cloud resources, (iv) presents the cloud Query Manager (CQM), an SPARQL server that implements the proposal, and (v) comparing three multi-cloud solutions in relation to CQM on the response time and the effectiveness in the resolution of cloud lock-in.
Resumo:
Il mondo dell’Internet of Things e del single board computing sono settori in forte espansione al giorno d’oggi e le architetture ARM sono, al momento, i dominatori in questo ambito. I sistemi operativi e i software si stanno evolvendo per far fronte a questo cambiamento e ai nuovi casi d’uso che queste tecnologie introducono. In questa tesi ci occuperemo del porting della distribuzione Linux Sabayon per queste architetture, la creazione di un infrastruttura per il rilascio delle immagini e la compilazione dei pacchetti software.
Resumo:
Cloud computing enables independent end users and applications to share data and pooled resources, possibly located in geographically distributed Data Centers, in a fully transparent way. This need is particularly felt by scientific applications to exploit distributed resources in efficient and scalable way for the processing of big amount of data. This paper proposes an open so- lution to deploy a Platform as a service (PaaS) over a set of multi- site data centers by applying open source virtualization tools to facilitate operation among virtual machines while optimizing the usage of distributed resources. An experimental testbed is set up in Openstack environment to obtain evaluations with different types of TCP sample connections to demonstrate the functionality of the proposed solution and to obtain throughput measurements in relation to relevant design parameters.
Resumo:
Questa tesi è incentrata sulla revisione del classico modello di infrastruttura Cloud. Le motivazioni sono da ricercare nelle condizioni operative reali della maggior parte dei dispositivi connessi alla rete attualmente. Si parla di ambiente ostile riferendosi a network popolate da molti dispositivi dalle limitate caratteristiche tecniche e spesso collegati con canali radio, molto più instabili delle connessioni cablate. Allo scenario va ad aggiungersi la necessità crescente di mobilità che limita ulteriormente i vantaggi derivanti dall'utilizzo dell’infrastruttura Cloud originale. La trattazione propone il modello Edge come estensione del Cloud. Esso ne amplia il ventaglio di utilizzo, favorendo aree di applicazione che stanno acquisendo maggiore influenza negli ultimi periodi e che richiedono una revisione delle vecchie infrastrutture Cloud, dettata dalle caratteristiche stringenti che necessitano per un'operatività soddisfacente.
Resumo:
A pesquisa considera a difusão de celulares e smartphones e as consequências deste fato em possibilidades para o ensino-aprendizagem. Aparatos de comunicação sempre estiveram ligados ao processo de ensino-aprendizagem. Entretanto, com o desenvolvimento mais intenso, nas últimas décadas, das Tecnologias de Informação e Comunicação (TIC), essa relação vem ganhando novos contornos. Surge a Internet, a evolução das máquinas computacionais e, recentemente, a explosão dos dispositivos móveis, fornecendo novos produtos e serviços convergentes. Nesse contexto, celulares e smartphones tem sido utilizados e recomendados para apoio e complemento do processo de ensino-aprendizagem: a chamada Aprendizagem Móvel. Esse ramo cresce devido à rápida expansão e barateamento dessas tecnologias na sociedade. Para verificar cientificamente essa relação foi realizada uma pesquisa de natureza qualitativa, do tipo exploratória, com dois projetos de Aprendizagem Móvel em andamento no Brasil, o Palma – Programa de Alfabetização na Língua Materna e o Escola Com Celular – ECC. Assim, a partir dos dados provenientes da pesquisa, identificamos alguns aspectos relacionados ao uso de celulares e smartphones para o processo de ensino-aprendizagem que contribuem na compreensão desse campo ainda em construção no Brasil. O uso desses dispositivos como suporte para processos de ensino-aprendizagem nos projetos estudados é delineado pelos aspectos tecnologia, dispositivo, público e contexto e novas tecnologias e Aprendizagem Móvel. O aspecto dispositivo desdobra-se em dimensões como disseminação, multifuncionalidade e acessibilidade que embasam os projetos, ainda favorece características apontadas como importantes para o processo de ensino-aprendizagem na atualidade, como mobilidade e portabilidade. Os projetos pesquisados demonstram potencial e metodologia adequada aos contextos para os quais foram criados e aplicados. Entretanto, a pesquisa indicou que ao mesmo tempo em que celulares e smartphones representam o ápice da convergência tecnológica e são considerados extremamente populares e acessíveis na sociedade contemporânea, com possibilidades concretas como nos projetos estudados, não conseguiram conquistar uma posição sólida como suporte para o ensino-aprendizagem. Tal indicação se deve, de acordo com o corpus, à carência de alguns fatores, como: fomento, as práticas se mostram extremamente dependentes da iniciativa pública ou privada para sua extensão e continuidade; sensibilização para o uso de tecnologias disponíveis, não consideram o aparelho dos próprios alunos e um planejamento que inclua, capacite e incentive o uso desses dispositivos. Além disso, a pesquisa também destaca a necessidade de uma visão crítica do uso e papel da tecnologia nesses processos.
Resumo:
Peer reviewed
Resumo:
The research described here is supported by the award made by the RCUK Digital Economy programme to the dot.rural Digital Economy Research Hub; award reference: EP/G066051/1/.
Resumo:
Postprint
Resumo:
Postprint
Resumo:
Postprint
Resumo:
A method of accurately controlling the position of a mobile robot using an external Large Volume Metrology (LVM) instrument is presented in this paper. Utilizing a LVM instrument such as the laser tracker in mobile robot navigation, many of the most difficult problems in mobile robot navigation can be simplified or avoided. Using the real- Time position information from the laser tracker, a very simple navigation algorithm, and a low cost robot, 5mm repeatability was achieved over a volume of 30m radius. A surface digitization scan of a wind turbine blade section was also demonstrated, illustrating possible applications of the method for manufacturing processes. © Springer-Verlag Berlin Heidelberg 2010.
Resumo:
Text summarization has been studied for over a half century, but traditional methods process texts empirically and neglect the fundamental characteristics and principles of language use and understanding. Automatic summarization is a desirable technique for processing big data. This reference summarizes previous text summarization approaches in a multi-dimensional category space, introduces a multi-dimensional methodology for research and development, unveils the basic characteristics and principles of language use and understanding, investigates some fundamental mechanisms of summarization, studies dimensions on representations, and proposes a multi-dimensional evaluation mechanism. Investigation extends to incorporating pictures into summary and to the summarization of videos, graphs and pictures, and converges to a general summarization method. Further, some basic behaviors of summarization are studied in the complex cyber-physical-social space. Finally, a creative summarization mechanism is proposed as an effort toward the creative summarization of things, which is an open process of interactions among physical objects, data, people, and systems in cyber-physical-social space through a multi-dimensional lens of semantic computing. The insights can inspire research and development of many computing areas.
Resumo:
This paper derives a theoretical framework for consideration of both the technologically driven dimensions of mobile payment solutions, and the associated value proposition for customers. Banks promote traditional payment instruments whose value proposition is the management of risk for both consumers and merchants. These instruments are centralised, costly and lack decision support functionality. The ubiquity of the mobile phone has provided a decentralised platform for managing payment processes in a new way, but the value proposition for customers has yet to be elaborated clearly. This inertia has stalled the design of sustainable revenue models for a mobile payments ecosystem. Merchants and consumers in the meantime are being seduced by the convenience of on-line and mobile payment solutions. Adopting the purchase and payment process as the unit of analysis, the current mobile payment landscape is reviewed with respect to the creation and consumption of customer value. From this analysis, a framework is derived juxtaposing customer value, related to what is being paid for, with payment integration, related to how payments are being made. The framework provides a theoretical and practical basis for considering the contribution of mobile technologies to the payment industry. The framework is then used to describe the components of a mobile payments pilot project being run on a trial population of 250 students on a campus in Ireland. In this manner, weaknesses in the value proposition for consumers and merchants were highlighted. Limitations of the framework as a research tool are also discussed.
Resumo:
Atomic ions trapped in micro-fabricated surface traps can be utilized as a physical platform with which to build a quantum computer. They possess many of the desirable qualities of such a device, including high fidelity state preparation and readout, universal logic gates, long coherence times, and can be readily entangled with each other through photonic interconnects. The use of optical cavities integrated with trapped ion qubits as a photonic interface presents the possibility for order of magnitude improvements in performance in several key areas of their use in quantum computation. The first part of this thesis describes the design and fabrication of a novel surface trap for integration with an optical cavity. The trap is custom made on a highly reflective mirror surface and includes the capability of moving the ion trap location along all three trap axes with nanometer scale precision. The second part of this thesis demonstrates the suitability of small micro-cavities formed from laser ablated fused silica substrates with radii of curvature in the 300-500 micron range for use with the mirror trap as part of an integrated ion trap cavity system. Quantum computing applications for such a system include dramatic improvements in the photonic entanglement rate up to 10 kHz, the qubit measurement time down to 1 microsecond, and the measurement error rates down to the 10e-5 range. The final part of this thesis details a performance simulator for exploring the physical resource requirements and performance demands to scale such a quantum computer to sizes capable of performing quantum algorithms beyond the limits of classical computation.