877 resultados para Mouse hematopoietic progenitors
Resumo:
The growth of the mouse parotid glands during 7 and 35 days of postnatal life was studied by morphometric methods. The mass of the gland, the volume of each morphological compartment, and the cell number in each compartment were evaluated. The data obtained for each evaluated dimension were adjusted by an exponential equation, of the type Y = a.e KX, thus permitting the calculation of their mean duplication time (T D), i.e., an estimation of their growth rate. Analysis of the results showed a marked 1,424% increase in the gland mass during the whole studied period, with T D = 7.10 days. This growth occurred by increases in absolute volume of acini, intercalated ducts, striated ducts, excretory ducts and stroma, with percentual increases of 3,048%, 417%, 2,662%, 2,594% and 367%, respectively, and T Ds of 5.62, 11.71, 5.55, 5.47 and 14.45 days, respectively. Analysis of the cell number growth in each compartment showed increases of 1,904%, 285%, 1,228%, 1,090% and 286%, respectively, and T Ds of 6.62, 20.40, 7.19, 7.26 and 14.51 days, respectively. Based on the present results, we concluded that the growth of the mouse parotid glands from day 7 to day 35 of age occurred by intense cell accumulation, mainly in the acini, striated ducts and excretory ducts, with a growth rate sensibly higher than that of the intercalated ducts and stroma.
Resumo:
Type II Bartter's syndrome is a hereditary hypokalemic renal salt-wasting disorder caused by mutations in the ROMK channel (Kir1.1; Kcnj1), mediating potassium recycling in the thick ascending limb of Henle's loop (TAL) and potassium secretion in the distal tubule and cortical collecting duct (CCT). Newborns with Type II Bartter are transiently hyperkalemic, consistent with loss of ROMK channel function in potassium secretion in distal convoluted tubule and CCT. Yet, these infants rapidly develop persistent hypokalemia owing to increased renal potassium excretion mediated by unknown mechanisms. Here, we used free-flow micropuncture and stationary microperfusion of the late distal tubule to explore the mechanism of renal potassium wasting in the Romk-deficient, Type II Bartter's mouse. We show that potassium absorption in the loop of Henle is reduced in Romk-deficient mice and can account for a significant fraction of renal potassium loss. In addition, we show that iberiotoxin (IBTX)-sensitive, flow-stimulated maxi-K channels account for sustained potassium secretion in the late distal tubule, despite loss of ROMK function. IBTX-sensitive potassium secretion is also increased in high-potassium-adapted wild-type mice. Thus, renal potassium wasting in Type II Bartter is due to both reduced reabsorption in the TAL and K secretion by max-K channels in the late distal tubule. © 2006 International Society of Nephrology.
Resumo:
In the present study, we evaluated three techniques, mouse bioassay, histopathology, and polymerase chain reaction (PCR) to detect Toxoplasma gondii infection in tissues from experimentally infected pigs. Twelve mixed breed pigs, seronegative for T. gondii using an indirect immunofluorescent antibody test (IFAT), were used. Ten pigs were infected with 4 × 104 VEG strain oocysts, and two were maintained as uninfected controls. Animals were killed 60 days pos infection. Muscle (heart, tongue, diaphragm, and masseter) and brain samples were collected to investigate the presence of T. gondii tissue cysts by the different assay methods. For the bioassay, samples of brain (50 g) and pool of muscle samples (12.5 g of tongue, masseter, diaphragm, and heart) were used. PCR was performed using Tox4 and Tox5 primers which amplified a 529 bp fragment. The DNA extraction and PCR were performed three times, and all tissue samples were tested individually (brain, tongue, masseter, diaphragm, and heart). For histopathology, fragments of tissues were fixed in 10% of buffered formal saline and stained with HE. Histopathological results were all negative. PCR showed 25/150 (16.6%) positive samples, being 17/120 (14.1%) and 8/30 (26.6%) from muscle, and brain tissues, respectively. Tissue cysts of T. gondii were identified by mouse bioassay in 54/98 (55.1%) samples, being 31/48 (64.6%) from muscle samples, and 23/50 (46.0%) from brain samples. Toxoplasma gondii isolation in muscle samples by mouse bioassay was higher than in PCR (P < 0.01). Results indicate that DNA from pig tissues interfered with 529-bp-PCR sensitivity, and mouse bioassay was better than PCR in detecting T. gondii in tissues from pigs. © 2006 Elsevier Inc. All rights reserved.
Resumo:
Fluoride has widely been used in Dentistry because it is a specific and effective caries prophylactic agent. However, excess fluoride may represent a hazard to human health, especially by causing injury on genetic apparatus. Genotoxicity tests constitute an important part of cancer research for risk assessment of potential carcinogens. In this study, the potential DNA damage associated with exposure to fluoride was assessed by the single cell gel (comet) assay in vitro. Mouse lymphoma and human fibroblast cells were exposed to sodium fluoride (NaF) at final concentration ranging from 7 to 100 μg/mL for 3 h at 37μC. The results pointed out that NaF in all tested concentrations did not contribute to DNA damage as depicted by the mean tail moment and tail intensity for both cellular types assessed. These findings are clinically important because they represent a valuable contribution for evaluation of the potential health risk associated with exposure to agents usually used in dental practice.
Resumo:
Chloroform and eucalyptol are widely used in clinical dentistry as gutta-percha solvents. However, these compounds may represent a hazard to human health, especially by causing injury to genetic apparatus and/or inducing cellular death. In this study, the genotoxic and cytotoxic potentials associated with exposure to chloroform and eucalyptol were assessed on mouse lymphoma cells in vitro by the single cell gel (comet) assay and trypan blue exclusion test, respectively. Both gutta-percha solvents proved to be cytotoxic at the same levels in concentrations of 2.5, 5 and 10 μL/mL (p<0.05). On the other hand, neither of the solvents induced DNA breakage. Taken together, these results suggest that although both tested compounds (chloroform and eucalyptol) are strong cytotoxicants, it seems that they are not likely to increase the level of DNA damage on mammalian cells.
Resumo:
It is known that the invasin molecule of Yersinia pseudotuberculosis stimulates human peripheral B cells in vitro. In this work we evaluated the in vivo role of invasin as polyclonal activator of B lymphocytes in the mouse experimental model, by comparing strains of Y. pseudotuberculosis expressing invasin and isogenic inv mutants. Swiss mice were infected intravenously with two strains expressing invasin (YpIII pIB1 and an isogenic virulence plasmid-cured strain, YpIII) and with two invasin mutant strains (Yp100 pIB1 and Yp100, plasmid-cured). Spleen cells were sampled on days 7, 14, 21 and 28 after infection. Immunoglobulin (Ig)-secreting spleen cells were detected by protein A plaque assay and specific antibodies were detected in sera by ELISA. The virulent strain YPIII pIB1 (wild type) did not provoke polyclonal activation of B lymphocytes in vivo. In general, fewer Ig-secreting spleen cells of all isotypes were found in the infected animals than in the control animals. Specific IgG antibodies were detected in the sera of animals infected with all strains. The peak response occurred on the 21 st day post-infection, and the Yp100 strain provoked the highest level of these antibodies. We concluded that invasin is not a polyclonal activator of murine B cells.
Resumo:
BACKGROUND: Annexin 1 is a 37-kDa protein that has complex intra- and extracellular effects. To discover whether the absence of this protein alters bone development, we monitored this event in the annexin-A1 null mice in comparison with littermate wild-type controls. METHODS: Radiographic and densitometry methods were used for the assessment of bone in annexin-A1 null mice at a gross level. We used whole-skeleton staining, histological analysis, and Western blotting techniques to monitor changes at the tissue and cellular levels. RESULTS: There were no gross differences in the appendicular skeleton between the genotypes, but an anomalous development of the skull was observed in the annexin-A1 null mice. This was characterized in the newborn annexin-A1 null animals by a delayed intramembranous ossification of the skull, incomplete fusion of the interfrontal suture and palatine bone, and the presence of an abnormal suture structure. The annexin-A1 gene was shown to be active in osteocytes during this phase and COX-2 was abundantly expressed in cartilage and bone taken from annexin-A1 null mice. CONCLUSIONS: Expression of the annexin-A1 gene is important for the normal development of the skull in mice, possibly through the regulation of osteoblast differentiation and a secondary effect on the expression of components of the cPLA2-COX-2 system. © 2007 Wiley-Liss, Inc.
Resumo:
Some recent articles have reported that mesenchymal stem cells (MSCs) can be induced to express hepatocyte markers by transplanting them into animal models of liver damage, or by in vitro culture with growth factors and cytokines. In this study, the aim is to evaluate the behavior of MSCs subjected to induction of hepatocyte differentiation. The MSCs were isolated from the bone marrow of 4 normal donors, characterized and subjected to both in vitro and in vivo induction of hepatocyte differentiation. The in vitro induced cells showed morphological changes, acquiring hepatocyte-like features. However, the immunophenotype of these cells was not modified. The induced cells exhibited no increase in albumin, cytokeratin 18 or cytokeratin 19 transcripts, when analyzed by real-time RT-PCR. The expression of albumin, cytokeratin 18 and alpha fetoprotein was also unchanged, according to immunofluorescence tests. In vivo, the MSC demonstrated a potential to migrate to damaged liver tissue in immunodeficient mice. Taken together, the results suggest that bone marrow MSCs are incapable of in vitro differentiation into hepatocytes by the approach used here, but are capable of homing to damaged hepatic tissue in vivo, suggesting a role for them in the repair of the liver. This contribution to tissue repair could be associated with a paracrine effect exerted by these cells.
Resumo:
Investigation of the efficacy of allogeneic hematopoietic stem cell transplantation (allo-HSCT) in chronic myeloid leukemia patients is essential to predict prognosis and survival. In 20 patients treated at the Bone Marrow Transplantation Unit of São José do Rio Preto (São Paulo, Brazil), we used fluorescence in situ hybridization (FISH) to investigate the frequency of cells with BCR/ABL rearrangement at diagnosis and at distinct intervals after allo-HSCT until complete cytogenetic remission (CCR). We investigated the disease-free survival, overall survival in 3 years and transplant-related mortality rates, too. Bone marrow samples were collected at 1, 2, 3, 4, 6, 12, and 24 months after transplantation and additional intervals as necessary. Success rate of the FISH analyses was 100%. CCR was achieved in 75% of the patients, within on average of 3.9 months; 45% patients showed CCR within 60 days after HSCT. After 3 years of the allo-HSCT, overall survival rate was 60%, disease-free survival was 50% and the transplant-related mortality rate was 40%. The study demonstrated that the BCR-ABL FISH assay is useful for follow-up of chronic myeloid leukemia patients after HSCT and that the clinical outcome parameters in our patient cohort were similar to those described for other bone marrow transplantation units. ©FUNPEC-RP.
Resumo:
We present the first complete study of basic laboratory-measured physiological variables (metabolism, thermoregulation, evaporative water loss, and ventilation) for a South American marsupial, the gracile mouse opossum (Gracilinanus agilis). Body temperature (Tb) was thermolabile below thermoneutrality (Tb = 33.5°C), but a substantial gradient between Tb and ambient temperature (Ta) was sustained even at Ta = 12°C (Tb = 30.6°C). Basal metabolic rate of 1.00 mL O2 g-1 h-1 at Ta = 30°C conformed to the general allometric relationship for marsupials, as did wet thermal conductance (5.7 mL O2 g-1 h-1 °C-1). Respiratory rate, tidal volume, and minute volume at thermoneutrality matched metabolic demand such that O2 extraction was 12.4%, and ventilation increased in proportion to metabolic rate at low T a. Ventilatory accommodation of increased metabolic rate at low Ta was by an increase in respiratory rate rather than by tidal volume or O2 extraction. Evaporative water loss at the lower limit of thermoneutrality conformed to that of other marsupials. Relative water economy was negative at thermoneutrality but positive below Ta = 12°C. Interestingly, the Neotropical gracile mouse opossums have a more positive water economy at low Ta than an Australian arid-zone marsupial, perhaps reflecting seasonal variation in water availability for the mouse opossum. Torpor occurred at low Ta, with spontaneous arousal when . T b > 20°C. Torpor resulted in absolute energy and water savings but lower relative water economy. We found no evidence that gracile mouse opossums differ physiologically from other marsupials, despite their Neotropical distribution, sympatry with placental mammals, and long period of separation from Australian marsupials. © 2009 by The University of Chicago. All rights reserved.
Resumo:
We consider what a concern for social justice in terms of social inclusion might mean for teacher education, both practising and prospective, with particular reference to the use of information and communication technology (ICT) in mathematics education taking place at a borderland school. Our discussion proceeds through the following steps: (1) We explore what a borderland position might denote to address what social inclusion might mean. (2) We consider the significance of mathematics education and the use of ICT for processes of social inclusion. (3) We briefly refer to the Interlink Network, as many of our observations emerge as reflections on this project. (4) We present different issues that will be of particular importance with respect to teacher education if we want to establish a mathematics education for social inclusion. These issues concern moving away from the comfort zone, establishing networks, identifying new approaches, moving beyond prototypical research, and getting in contact. This brings us to (5) final considerations, where we return to the notion of social justice. © Springer Science+Business Media B.V. 2009.
Resumo:
The activities of perlatolic acid (1), atranorin (2), and lecanoric acid (3) and their derivatives, such as orsellinates and β-methyl orsellinates obtained by alcoholysis, were assessed for stimulation of the release of hydrogen peroxide and nitric oxide in cultures of peritoneal macrophage cells from mice. The hydrogen peroxide production was estimated by oxidation of phenol red, while the Griess reagent was used to determine the nitric oxide production. 1 and 4-methoxy-ethyl orsellinate (XVII) were the compounds that induced the greatest release of H 2O 2, whereas n-pentyl orsellinate (IV), iso-propyl orsellinate (V), sec-butyl orsellinate (VI), and XVII induced a small release of NO. These results indicate that lichen products and their derivatives have potential immune-modulating activities. © 2009 Verlag der Zeitschrift für Naturforschung, Tübingen.
Resumo:
Emphysema is a chronic obstructive pulmonary disease characterized abnormal dilatation of alveolar spaces, which impairs alveolar gas exchange, compromising the physical capacity of a patient due to airflow limitations. Here we tested the effects of G-CSF administration in pulmonary tissue and exercise capacity in emphysematous mice. C57Bl/6 female mice were treated with elastase intratracheally to induce emphysema. Their exercise capacities were evaluated in a treadmill. Lung histological sections were prepared to evaluate mean linear intercept measurement. Emphysematous mice were treated with G-CSF (3 cycles of 200 μg/kg/day for 5 consecutive days, with 7-day intervals) or saline and submitted to a third evaluation 8 weeks after treatment. Values of run distance and linear intercept measurement were expressed as mean ± SD and compared applying a paired t-test. Effects of treatment on these parameters were analyzed applying a Repeated Measures ANOVA, followed by Tukey's post hoc analysis. p < 0.05 was considered statistically significant. Twenty eight days later, animals ran significantly less in a treadmill compared to normal mice (549.7 ± 181.2 m and 821.7 ± 131.3 m, respectively; p < 0.01). Treatment with G-CSF significantly increased the exercise capacity of emphysematous mice (719.6 ± 200.5 m), whereas saline treatment had no effect on distance run (595.8 ± 178.5 m). The PCR cytokines genes analysis did not detect difference between experimental groups. Morphometric analyses in the lung showed that saline-treated mice had a mean linear intercept significantly higher (p < 0.01) when compared to mice treated with G-CSF, which did not significantly differ from that of normal mice. Treatment with G-CSF promoted the recovery of exercise capacity and regeneration of alveolar structural alterations in emphysematous mice. © 2013.
Resumo:
The Candida genus expresses virulence factors that, when combined with immunosuppression and other risk factors, can cause different manifestations of oral candidiasis. The treatment of mucosal infections caused by Candida and the elucidation of the disease process have proven challenging. Therefore, the study of experimentally induced oral candidiasis in rats and mice is useful to clarify the etiopathology of this condition, improve diagnosis, and search for new therapeutic options because the disease process in these animals is similar to that of human candidiasis lesions. Here, we describe and discuss new studies involving rat and mouse models of oral candidiasis with respect to methods for inducing experimental infection, methods for evaluating the development of experimental candidiasis, and new treatment strategies for oral candidiasis. © 2013 Landes Bioscience.
Resumo:
Paracoccidioidomycosis is a human systemic mycosis caused by the fungus Paracoccidioides brasiliensis. The mechanisms involved in innate immune response to this fungus are not fully elucidated. Leukotrienes are known to be critical for the clearance of various microorganisms, mainly by mediating the microbicidal function of phagocytes. We investigated the involvement of leukotriene B4 in the early stages of experimental paracoccidioidomycosis, which was induced by intratracheal inoculation of the fungus in selected mouse lines. The mouse lines utilized were produced through bi-directional phenotypic selection, endowed with maximal or minimal acute inflammatory reactivity, and designated AIRmax and AIRmin, respectively. AIRmax mice were more resistant to the infection, which was demonstrated by reduced lung fungal loads. However, the two lines produced similar amounts of leukotriene B4, and pharmacological inhibition of this mediator provoked similar fungal load increases in the two lines. The lower fungal load in the AIRmax mice was associated with a more effective inflammatory response, which was characterized by enhanced recruitment and activation of phagocytic cells and an increased production of activator cytokines. This process resulted in an increased release of fungicidal molecules and a diminution of fungal load. In both lines, leukotriene production was associated with a protective response in the lung that was consequent to the effect of this eicosanoid on the influx and activation of phagocytes. © 2013 ISHAM.