4 resultados para Mouse hematopoietic progenitors
em CaltechTHESIS
Resumo:
In response to infection or tissue dysfunction, immune cells develop into highly heterogeneous repertoires with diverse functions. Capturing the full spectrum of these functions requires analysis of large numbers of effector molecules from single cells. However, currently only 3-5 functional proteins can be measured from single cells. We developed a single cell functional proteomics approach that integrates a microchip platform with multiplex cell purification. This approach can quantitate 20 proteins from >5,000 phenotypically pure single cells simultaneously. With a 1-million fold miniaturization, the system can detect down to ~100 molecules and requires only ~104 cells. Single cell functional proteomic analysis finds broad applications in basic, translational and clinical studies. In the three studies conducted, it yielded critical insights for understanding clinical cancer immunotherapy, inflammatory bowel disease (IBD) mechanism and hematopoietic stem cell (HSC) biology.
To study phenotypically defined cell populations, single cell barcode microchips were coupled with upstream multiplex cell purification based on up to 11 parameters. Statistical algorithms were developed to process and model the high dimensional readouts. This analysis evaluates rare cells and is versatile for various cells and proteins. (1) We conducted an immune monitoring study of a phase 2 cancer cellular immunotherapy clinical trial that used T-cell receptor (TCR) transgenic T cells as major therapeutics to treat metastatic melanoma. We evaluated the functional proteome of 4 antigen-specific, phenotypically defined T cell populations from peripheral blood of 3 patients across 8 time points. (2) Natural killer (NK) cells can play a protective role in chronic inflammation and their surface receptor – killer immunoglobulin-like receptor (KIR) – has been identified as a risk factor of IBD. We compared the functional behavior of NK cells that had differential KIR expressions. These NK cells were retrieved from the blood of 12 patients with different genetic backgrounds. (3) HSCs are the progenitors of immune cells and are thought to have no immediate functional capacity against pathogen. However, recent studies identified expression of Toll-like receptors (TLRs) on HSCs. We studied the functional capacity of HSCs upon TLR activation. The comparison of HSCs from wild-type mice against those from genetics knock-out mouse models elucidates the responding signaling pathway.
In all three cases, we observed profound functional heterogeneity within phenotypically defined cells. Polyfunctional cells that conduct multiple functions also produce those proteins in large amounts. They dominate the immune response. In the cancer immunotherapy, the strong cytotoxic and antitumor functions from transgenic TCR T cells contributed to a ~30% tumor reduction immediately after the therapy. However, this infused immune response disappeared within 2-3 weeks. Later on, some patients gained a second antitumor response, consisted of the emergence of endogenous antitumor cytotoxic T cells and their production of multiple antitumor functions. These patients showed more effective long-term tumor control. In the IBD mechanism study, we noticed that, compared with others, NK cells expressing KIR2DL3 receptor secreted a large array of effector proteins, such as TNF-α, CCLs and CXCLs. The functions from these cells regulated disease-contributing cells and protected host tissues. Their existence correlated with IBD disease susceptibility. In the HSC study, the HSCs exhibited functional capacity by producing TNF-α, IL-6 and GM-CSF. TLR stimulation activated the NF-κB signaling in HSCs. Single cell functional proteome contains rich information that is independent from the genome and transcriptome. In all three cases, functional proteomic evaluation uncovered critical biological insights that would not be resolved otherwise. The integrated single cell functional proteomic analysis constructed a detail kinetic picture of the immune response that took place during the clinical cancer immunotherapy. It revealed concrete functional evidence that connected genetics to IBD disease susceptibility. Further, it provided predictors that correlated with clinical responses and pathogenic outcomes.
Resumo:
Interleukin-2 (IL-2) is an important mediator in the vertebrate immune system. IL-2 is a potent growth factor that mature T lymphocytes use as a proliferation signal and the production of IL-2 is crucial for the clonal expansion of antigen-specific T cells in the primary immune response. IL-2 driven proliferation is dependent on the interaction of the lymphokine with its cognate multichain receptor. IL-2 expression is induced only upon stimulation and transcriptional activation of the IL-2 gene relies extensively on the coordinate interaction of numerous inducible and constitutive trans-acting factors. Over the past several years, thousands of papers have been published regarding molecular and cellular aspects of IL-2 gene expression and IL-2 function. The vast majority of these reports describe work that has been carried out in vitro. However, considerably less is known about control of IL-2 gene expression and IL-2 function in vivo.
To gain new insight into the regulation of IL-2 gene expression in vivo, anatomical and developmental patterns of IL-2 gene expression in the mouse were established by employing in situ hybridization and immunohistochemical staining methodologies to tissue sections generated from normal mice and mutant animals in which T -cell development was perturbed. Results from these studies revealed several interesting aspects of IL-2 gene expression, such as (1) induction of IL-2 gene expression and protein synthesis in the thymus, the primary site of T-cell development in the body, (2) cell-type specificity of IL-2 gene expression in vivo, (3) participation of IL-2 in the extrathymic expansion of mature T cells in particular tissues, independent of an acute immune response to foreign antigen, (4) involvement of IL-2 in maintaining immunologic balance in the mucosal immune system, and (5) potential function of IL-2 in early events associated with hematopoiesis.
Extensive analysis of IL-2 mRNA accumulation and protein production in the murine thymus at various stages of development established the existence of two classes of intrathymic IL-2 producing cells. One class of intrathymic IL-2 producers was found exclusively in the fetal thymus. Cells belonging to this subset were restricted to the outermost region of the thymus. IL-2 expression in the fetal thymus was highly transient; a dramatic peak ofiL-2 mRNA accumulation was identified at day 14.5 of gestation and maximal IL-2 protein production was observed 12 hours later, after which both IL-2 mRNA and protein levels rapidly decreased. Significantly, the presence of IL-2 expressing cells in the day 14-15 fetal thymus was not contingent on the generation of T-cell receptor (TcR) positive cells. The second class of IL-2 producing cells was also detectable in the fetal thymus (cells found in this class represented a minority subset of IL-2 producers in the fetal thymus) but persist in the thymus during later stages of development and after birth. Intrathymic IL-2 producers in postnatal animals were located in the subcapsular region and cortex, indicating that these cells reside in the same areas where immature T cells are consigned. The frequency of IL-2 expressing cells in the postnatal thymus was extremely low, indicating that induction of IL-2 expression and protein synthesis are indicative of a rare activation event. Unlike the fetal class of intrathymic IL-2 producers, the presence of IL-2 producing cells in the postnatal thymus was dependent on to the generation of TcR+ cells. Subsequent examination of intrathymic IL-2 production in mutant postnatal mice unable to produce either αβ or γδ T cells showed that postnatal IL-2 producers in the thymus belong to both αβ and γδ lineages. Additionally, further studies indicated that IL-2 synthesis by immature αβ -T cells depends on the expression of bonafide TcR αβ-heterodimers. Taken altogether, IL-2 production in the postnatal thymus relies on the generation of αβ or γδ-TcR^+ cells and induction of IL-2 protein synthesis can be linked to an activation event mediated via the TcR.
With regard to tissue specificity of IL-2 gene expression in vivo, analysis of whole body sections obtained from normal neonatal mouse pups by in situ hybridization demonstrated that IL-2 mRNA^+ cells were found in both lymphoid and nonlymphoid tissues with which T cells are associated, such as the thymus (as described above), dermis and gut. Tissues devoid of IL-2 mRNA^+ cells included brain, heart, lung, liver, stomach, spine, spinal cord, kidney, and bladder. Additional analysis of isolated tissues taken from older animals revealed that IL-2 expression was undetectable in bone marrow and in nonactivated spleen and lymph nodes. Thus, it appears that extrathymic IL-2 expressing cells in nonimmunologically challenged animals are relegated to particular epidermal and epithelial tissues in which characterized subsets of T cells reside and thatinduction of IL-2 gene expression associated with these tissues may be a result of T-cell activation therein.
Based on the neonatal in situ hybridization results, a detailed investigation into possible induction of IL-2 expression resulting in IL-2 protein synthesis in the skin and gut revealed that IL-2 expression is induced in the epidermis and intestine and IL-2 protein is available to drive cell proliferation of resident cells and/or participate in immune function in these tissues. Pertaining to IL-2 expression in the skin, maximal IL-2 mRNA accumulation and protein production were observed when resident Vγ_3^+ T-cell populations were expanding. At this age, both IL-2 mRNA^+ cells and IL-2 protein production were intimately associated with hair follicles. Likewise, at this age a significant number of CD3ε^+ cells were also found in association with follicles. The colocalization of IL-2 expression and CD3ε^+ cells suggests that IL-2 expression is induced when T cells are in contact with hair follicles. In contrast, neither IL-2 mRNA nor IL-2 protein were readily detected once T-cell density in the skin reached steady-state proportions. At this point, T cells were no longer found associated with hair follicles but were evenly distributed throughout the epidermis. In addition, IL-2 expression in the skin was contingent upon the presence of mature T cells therein and induction of IL-2 protein synthesis in the skin did not depend on the expression of a specific TcR on resident T cells. These newly disclosed properties of IL-2 expression in the skin indicate that IL-2 may play an additional role in controlling mature T-cell proliferation by participating in the extrathymic expansion of T cells, particularly those associated with the epidermis.
Finally, regarding IL-2 expression and protein synthesis in the gut, IL-2 producing cells were found associated with the lamina propria of neonatal animals and gut-associated IL-2 production persisted throughout life. In older animals, the frequency of IL-2 producing cells in the small intestine was not identical to that in the large intestine and this difference may reflect regional specialization of the mucosal immune system in response to enteric antigen. Similar to other instances of IL-2 gene expression in vivo, a failure to generate mature T cells also led to an abrogation of IL-2 protein production in the gut. The presence of IL-2 producing cells in the neonatal gut suggested that these cells may be generated during fetal development. Examination of the fetal gut to determine the distribution of IL-2 producing cells therein indicated that there was a tenfold increase in the number of gut-associated IL-2 producers at day 20 of gestation compared to that observed four days earlier and there was little difference between the frequency of IL-2 producing cells in prenatal versus neonatal gut. The origin of these fetally-derived IL-2 producing cells is unclear. Prior to the immigration of IL-2 inducible cells to the fetal gut and/or induction of IL-2 expression therein, IL-2 protein was observed in the fetal liver and fetal omentum, as well as the fetal thymus. Considering that induction of IL-2 protein synthesis may be an indication of future functional capability, detection of IL-2 producing cells in the fetal liver and fetal omentum raises the possibility that IL-2 producing cells in the fetal gut may be extrathymic in origin and IL-2 producing cells in these fetal tissues may not belong solely to the T lineage. Overall, these results provide increased understanding of the nature of IL-2 producing cells in the gut and how the absence of IL-2 production therein and in fetal hematopoietic tissues can result in the acute pathology observed in IL-2 deficient animals.
Resumo:
During inflammation and infection, hematopoietic stem and progenitor cells (HSPCs) are stimulated to proliferate and differentiate into mature immune cells, especially of the myeloid lineage. MicroRNA-146a (miR-146a) is a critical negative regulator of inflammation. Deletion of the gene encoding miR-146a—expressed in all blood cell types—produces effects that appear as dysregulated inflammatory hematopoiesis, leading to a decline in the number and quality of hematopoietic stem cells (HSCs), excessive myeloproliferation, and, ultimately, to exhaustion of the HSCs and hematopoietic neoplasms. Six-week-old deleted mice are normal, with no effect on cell numbers, but by 4 months bone marrow hypercellularity can be seen, and by 8 months marrow exhaustion is becoming evident. The ability of HSCs to replenish the entire hematopoietic repertoire in a myelo-ablated mouse also declines precipitously as miR-146a-deficient mice age. In the absence of miR-146a, LPS-mediated serial inflammatory stimulation accelerates the effects of aging. This chronic inflammatory stress on HSCs in deleted mice involves a molecular axis consisting of upregulation of the signaling protein TRAF6 leading to excessive activity of the transcription factor NF-κB and overproduction of the cytokine IL-6. At the cellular level, transplant studies show that the defects are attributable to both an intrinsic problem in the miR-146a-deficient HSCs and extrinsic effects of miR-146a-deficient lymphocytes and non-hematopoietic cells. This study has identified a microRNA, miR-146a, to be a critical regulator of HSC homeostasis during chronic inflammatory challenge in mice and has provided a molecular connection between chronic inflammation and the development of bone marrow failure and myeloproliferative neoplasms. This may have implications for human hematopoietic malignancies, such as myelodysplastic syndrome, which frequently displays downregulated miR-146a expression.
MicroRNA-132 is a physiological regulator of hematopoietic stem cell function and B-cell development
Resumo:
MicroRNAs are a class of small non-coding RNAs that negatively regulate gene expression. Several microRNAs have been implicated in altering hematopoietic cell fate decisions. Importantly, deregulation of many microRNAs can lead to deleterious consequences in the hematopoietic system, including the onset of cancer, autoimmunity, or a failure to respond effectively to infection. As such, microRNAs fine-tune the balance between normal hematopoietic output and pathologic consequences. In this work, we explore the role of two microRNAs, miR-132 and miR-125b, in regulating hematopoietic stem cell (HSC) function and B cell development. In particular, we uncover the role of miR-132 in maintaining the appropriate balance between self-renewal, differentiation, and survival in aging HSCs by buffering the expression of a critical transcription factor, FOXO3. By maintain this balance, miR-132 may play a critical role in preventing aging-associated hematopoietic conditions such as autoimmune disease and cancer. We also find that miR-132 plays a critical role in B cell development by targeting a key transcription factor, Sox4, that is responsible for the differentiation of pro-B cells into pre-B cells. We find that miR-132 regulates B cell apoptosis, and by delivering miR-132 to mice that are predisposed to developing B cell cancers, we can inhibit the formation of these cancers and improve the survival of these mice. In addition to miR-132, we uncovered the role of another critical microRNA, miR-125b, that potentiates hematopoietic stem cell function. We found that enforced expression of miR-125b causes an aggressive myeloid leukemia by downregulation of its target Lin28a. Importantly, miR-125b also plays a critical role in inhibiting the formation of pro-B cells. Thus, we have discovered two microRNAs with important roles in regulating normal hematopoiesis, and whose dregulation can lead to deleterious consequences such as cancer in the aging hematopoietic system. Both miR-132 and miR-125b may therefore be targeted for therapeutics to inhibit age-related immune diseases associated with the loss of HSC function and cancer progression.