928 resultados para Motion study
Resumo:
The approach to remove green house gases by pumping liquid CO2 several kilometres below the ground implies that many carbonate containing minerals will be formed. Among these minerals the formation of dypingite and artinite are possible; thus necessitating a study of such minerals. Two carbonate bearing minerals dypingite and artinite with a hydrotalcite related formulae have been characterised by a combination of infrared and near-infrared spectroscopy. The infrared spectra of both minerals are characterised by OH and water stretching vibrations. Both the first and second fundamental overtones of these bands are observed in the NIR spectra in the 7030 to 7235 cm-1 and 10490 to 10570 cm-1. Intense (CO3)2- symmetric and antisymmetric stretching vibrations confirm the distortion of the carbonate anion. The position of the water bending vibration indicates water is strongly hydrogen bonded to the carbonate anion in the mineral structure. Split NIR bands at around 8675 and 11100 cm-1 indicates that some replacement of magnesium ions by ferrous ions in the mineral structure has occurred.
Resumo:
The purpose of this proof-of-concept study was to determine the relevance of direct measurements to monitor the load applied on the osseointegrated fixation of transfemoral amputees during static load bearing exercises. The objectives were (A) to introduce an apparatus using a three-dimensional load transducer, (B) to present a range of derived information relevant to clinicians, (C) to report on the outcomes of a pilot study and (D) to compare the measurements from the transducer with those from the current method using a weighing scale. One transfemoral amputee fitted with an osseointegrated implant was asked to apply 10 kg, 20 kg, 40 kg and 80 kg on the fixation, using self-monitoring with the weighing scale. The loading was directly measured with a portable kinetic system including a six-channel transducer, external interface circuitry and a laptop. As the load prescribed increased from 10 kg to 80 kg, the forces and moments applied on and around the antero-posterior axis increased by 4 fold anteriorly and 14 fold medially, respectively. The forces and moments applied on and around the medio-lateral axis increased by 9 fold laterally and 16 fold from anterior to posterior, respectively. The long axis of the fixation was overloaded and underloaded in 17 % and 83 % of the trials, respectively, by up to ±10 %. This proof-of-concept study presents an apparatus that can be used by clinicians facing the challenge of improving basic knowledge on osseointegration, for the design of equipment for load bearing exercises and for rehabilitation programs.
Resumo:
New media, as a free and universal communication tool, has had an impact on the power of the general public to comment on a variety of issues. As the public can comment favourably or unfavourably on advertisements, such as on Youtube, the advertising industry must start using weblogs to research reaction to their advertising campaigns. This exploratory study examines the responses of some advertising industry practitioners, both advertisers and agencies, on the impact of new media, specifically weblogs, and the use of new media as a source of research on advertising campaigns.
Resumo:
Raman spectroscopy has been used to characterise the antimonate mineral bahianite Al5Sb35+O14(OH)2 , a semi-precious gem stone. The mineral is characterised by an intense Raman band at 818 cm-1 assigned to Sb3O1413- stretching vibrations. Other lower intensity bands at 843 and 856 cm-1 are also assigned to this vibration and this concept suggests the non-equivalence of SbO units in the structure. Low intensity Raman bands at 669 and 682 cm-1 are probably assignable to the OSbO antisymmetric stretching vibrations. Raman bands at 1756, 1808 and 1929 cm-1 may be assigned to δ SbOH deformation modes, whilst Raman bands at 3462 and 3495 cm-1 are assigned to AlOH stretching vibrations. Complexity in the low wave number region is attributed to the composition of the mineral.
Resumo:
Raman spectroscopy has been used to study the rare earth mineral churchite-(Y) of formula (Y,REE)(PO4) •2H2O. The mineral contains yttrium and depending on the locality, a range of rare earth metals. The Raman spectra of two churchite-(Y) mineral samples from Jáchymov and Medvědín in the Czech Republic were compared with the Raman spectra of churchite-(Y) downloaded from the RRUFF data base. The Raman spectra of churchite-(Y) are characterized by an intense sharp band at 975 cm-1 assigned to the ν1 (PO4)3- symmetric stretching mode. A lower intensity band observed at around 1065 cm-1 is attributed to the ν3 (PO43-) antisymmetric stretching mode. The (PO43-) bending modes are observed at 497 cm-1 (ν2) and 563 cm-1(ν4). Some small differences in the band positions between the four churchite-(Y) samples from four different localities were found. These differences are possible to explain as different compositions of the churchite-(Y) minerals.
Resumo:
Providing precise positioning services in regional areas to support agriculture, mining, and construction sectors depends on the availability of ground continuously operating GNSS reference stations and communications linking these stations to central computers and users. With the support of CRC for Spatial Information, a more comprehensive review has been completed recently to examine various wired and wireless communication links available for precise positioning services, in particular in the Queensland regional areas. The study covers a wide range of communication technologies that are currently available, including fixed, mobile wireless, and Geo-stationary and or low earth orbiting satellites. These technologies are compared in terms of bandwidth, typical latency, reliability, coverage, and costs. Additionally, some tests were also conducted to determine the performances of different systems in the real environment. Finally, based on user application requirements, the paper discusses the suitability of different communication links.
Resumo:
This chapter reports on a critical literacy approach to developing intercultural competence in an EFL/ESL classroom: an approach which uses a form of 'connective analysis' between linguacultures leading to productive exploration of the interstices between cultures.
Resumo:
This paper describes an experiment undertaken to investigate intuitive interaction, particularly in older adults. Previous work has shown that intuitive interaction relies on past experience, and has also suggested that older people demonstrate less intuitive uses and slower times when completing set tasks with various devices. Similarly, this experiment showed that past experience with relevant products allowed people to use the interfaces of two different microwaves more quickly, although there were no significant differences between the different microwaves. It also revealed that certain aspects of cognitive decline related to aging, such as central executive function, have more impact on time, correct uses and intuitive uses than chronological age. Implications of these results and further work in this area are discussed.
Resumo:
In this study, biometric and structural engineering tool have been used to examine a possible relationship within Chuaria–Tawuia complex and micro-FTIR (Fourier Transform Infrared Spectroscopy) analyses to understand the biological affinity of Chuaria circularis Walcott, collected from the Mesoproterozoic Suket Shales of the Vindhyan Supergroup and the Neoproterozoic Halkal Shales of the Bhima Group of peninsular India. Biometric analyses of well preserved carbonized specimens show wide variation in morphology and uni-modal distribution. We believe and demonstrate to a reasonable extent that C. circularis most likely was a part of Tawuia-like cylindrical body of algal origin. Specimens with notch/cleft and overlapping preservation, mostly recorded in the size range of 3–5 mm, are of special interest. Five different models proposed earlier on the life cycle of C. circularis are discussed. A new model, termed as ‘Hybrid model’ based on present multidisciplinary study assessing cylindrical and spherical shapes suggesting variable cell wall strength and algal affinity is proposed. This model discusses and demonstrates varied geometrical morphologies assumed by Chuaria and Tawuia, and also shows the inter-relationship of Chuaria–Tawuia complex. Structural engineering tool (thin walled pressure vessel theory) was applied to investigate the implications of possible geometrical shapes (sphere and cylinder), membrane (cell wall) stresses and ambient pressure environment on morphologically similar C. circularis and Tawuia. The results suggest that membrane stresses developed on the structures similar to Chuaria–Tawuia complex were directly proportional to radius and inversely proportional to the thickness in both cases. In case of hollow cylindrical structure, the membrane stresses in circumferential direction (hoop stress) are twice of the longitudinal direction indicating that rupture or fragmentation in the body of Tawuia would have occurred due to hoop stress. It appears that notches and discontinuities seen in some of the specimens of Chuaria may be related to rupture suggesting their possible location in 3D Chuaria. The micro-FTIR spectra of C. circularis are characterized by both aliphatic and aromatic absorption bands. The aliphaticity is indicated by prominent alkyl group bands between 2800–3000 and 1300–1500 cm−1. The prominent absorption signals at 700–900 cm−1 (peaking at 875 and 860 cm−1) are due to aromatic CH out of plane deformation. A narrow, strong band is centred at 1540 cm−1 which could be COOH band. The presence of strong aliphatic bands in FTIR spectra suggests that the biogeopolymer of C. circularis is of aliphatic nature. The wall chemistry indicates the presence of ‘algaenan’—a biopolymer of algae.
Resumo:
The mineral lewisite, (Ca,Fe,Na)2(Sb,Ti)2O6(O,OH)7 an antimony bearing mineral has been studied by Raman spectroscopy. A comparison is made with the Raman spectra of other minerals including bindheimite, stibiconite and roméite. The mineral lewisite is characterised by an intense sharp band at 517 cm-1 with a shoulder at 507 cm-1 assigned to SbO stretching modes. Raman bands of medium intensity for lewisite are observed at 300, 356 and 400 cm-1. These bands are attributed to OSbO bending vibrations. Raman bands in the OH stretching region are observed at 3200, 3328, 3471 cm-1 with a distinct shoulder at 3542 cm-1. The latter is assigned to the stretching vibration of OH units. The first three bands are attributed to water stretching vibrations. The observation of bands in the 3200 to 3500 cm-1 region suggests that water is involved in the lewisite structure. If this is the case then the formula may be better written as Ca, Fe2+, Na)2(Sb, Ti)2(O,OH)7 •xH2O.