980 resultados para Molecular Sequence Data


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pathogenic mutations in TMPRSS3, which encodes a transmembrane serine protease, cause non-syndromic deafness DFNB8/10. Missense mutations map in the low density-lipoprotein receptor A (LDLRA), scavenger-receptor cysteine-rich (SRCR), and protease domains of the protein, indicating that all domains are important for its function. TMPRSS3 undergoes proteolytic cleavage and activates the ENaC sodium channel in a Xenopus oocyte model system. To assess the importance of this gene in non-syndromic childhood or congenital deafness in Turkey, we screened for mutations affected members of 25 unrelated Turkish families. The three families with the highest LOD score for linkage to chromosome 21q22.3 were shown to harbor P404L, R216L, or Q398X mutations, suggesting that mutations in TMPRSS3 are a considerable contributor to non-syndromic deafness in the Turkish population. The mutant TMPRSS3 harboring the novel R216L missense mutation within the predicted cleavage site of the protein fails to undergo proteolytic cleavage and is unable to activate ENaC, thus providing evidence that pre-cleavage of TMPRSS3 is mandatory for normal function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cerebral, ocular, dental, auricular, skeletal anomalies (CODAS) syndrome (MIM 600373) was first described and named by Shehib et al, in 1991 in a single patient. The anomalies referred to in the acronym are as follows: cerebral-developmental delay, ocular-cataracts, dental-aberrant cusp morphology and delayed eruption, auricular-malformations of the external ear, and skeletal-spondyloepiphyseal dysplasia. This distinctive constellation of anatomical findings should allow easy recognition but despite this only four apparently sporadic patients have been reported in the last 20 years indicating that the full phenotype is indeed very rare with perhaps milder or a typical presentations that are allelic but without sufficient phenotypic resemblance to permit clinical diagnosis. We performed exome sequencing in three patients (an isolated case and a brother and sister sib pair) with classical features of CODAS. Sanger sequencing was used to confirm results as well as for mutation discovery in a further four unrelated patients ascertained via their skeletal features. Compound heterozygous or homozygous mutations in LONP1 were found in all (8 separate mutations; 6 missense, 1 nonsense, 1 small in-frame deletion) thus establishing the genetic basis of CODAS and the pattern of inheritance (autosomal recessive). LONP1 encodes an enzyme of bacterial ancestry that participates in protein turnover within the mitochondrial matrix. The mutations cluster at the ATP-binding and proteolytic domains of the enzyme. Biallelic inheritance and clustering of mutations confirm dysfunction of LONP1 activity as the molecular basis of CODAS but the pathogenesis remains to be explored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We described for the first time the amino acid substitutions conferring rifampicin resistance in eight Propionibacterium acnes strains isolated from patients with biofilm or device-related infections. We identified different mutations in cluster I and one mutation, never reported, in cluster II of the rpoB gene (I480V) associated with the most frequent one in cluster I (S442L). Half of the patients previously received treatment with rifampicin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rare germ-line polymorphism in codon 47 of the p53 gene replaces the wild-type proline (CCG) with a serine (TCG). Restriction analysis of 101 human samples revealed the frequency of the rare allele to be 0% (n = 69) in Caucasians and 4.7% (3/64, n = 32) among African-Americans. To investigate the consequence of this amino acid substitution, a cDNA construct (p53 mut47ser) containing the mutation was introduced into a lung adenocarcinoma cell line (Calu-6) that does not express p53. A growth suppression similar to that obtained after introduction of a wild-type p53 cDNA construct was observed, in contrast to the result obtained by introduction of p53 mut143ala. Furthermore, expression of neither p53 mut47ser nor wild-type p53 was tolerated by growing cells. In transient expression assays, both mut47ser and wild-type p53 activated the expression of a reporter gene linked to a p53 binding sequence (PG13-CAT) and inhibited the expression of the luciferase gene under the control of the Rous sarcoma virus promoter (RSVluc). In the same assay, mut143ala did not activate the expression of PG13-CAT and produced only a slight inhibitory effect on RSVluc. These findings indicate that the p53 variant with a serine at codon 47 should be considered as a rare germ-line polymorphism that does not alter the growth-suppression activity of p53.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The RFLP/PCR approach (restriction fragment length polymorphism/polymerase chain reaction) to genotypic mutation analysis described here measures mutations in restriction recognition sequences. Wild-type DNA is restricted before the resistant, mutated sequences are amplified by PCR and cloned. We tested the capacity of this experimental design to isolate a few copies of a mutated sequence of the human c-Ha-ras1 gene from a large excess of wild-type DNA. For this purpose we constructed a 272 bp fragment with 2 mutations in the PvuII recognition sequence 1727-1732 and studied the rescue by RFLP/PCR of a few copies of this 'PvuII mutant standard'. Following amplification with Taq-polymerase and cloning into lambda gt10, plaques containing wild-type sequence, PvuII mutant standard or Taq-polymerase induced bp changes were quantitated by hybridization with specific oligonucleotide probes. Our results indicate that 10 PvuII mutant standard copies can be rescued from 10(8) to 10(9) wild-type sequences. Taq polymerase errors originating from unrestricted, residual wild-type DNA were sequence dependent and consisted mostly of transversions originating at G.C bp. In contrast to a doubly mutated 'standard' the capacity to rescue single bp mutations by RFLP/PCR is limited by Taq-polymerase errors. Therefore, we assessed the capacity of our protocol to isolate a G to T transversion mutation at base pair 1698 of the MspI-site 1695-1698 of the c-Ha-ras1 gene from excess wild-type ras1 DNA. We found that 100 copies of the mutated ras1 fragment could be readily rescued from 10(8) copies of wild-type DNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inducible nitric oxide synthase (iNOS) production of nitric oxide (NO) has been mostly associated with so-called nitrosative stress or interaction with superoxide anion. However, recent investigations have indicated that, as for the other isoenzymes producing NO, guanylyl cyclase (GC) is a very sensitive target of iNOS activity. To further investigate this less explored signaling, the NO-cyclic guanosine 3'-5'-monophosphate (NO-cGMP)-induced vasodilator-stimulated phosphoprotein (VASP) phosphorylation on serine 239 was investigated in human embryonic kidney 293 cells (HEK cells). First, the expression and activity of alpha2 and beta1 NO-sensitive GC subunits was determined by Western blot analysis, reverse transcription-polymerase chain reaction and NO donors administration. Then, the expression of a functional cGMP-dependent protein kinase I (PKGI) was verified by addition of 8-Br-cGMP followed by determination of phosphorylation of VASP on serine 239. Finally, iNOS activation of this signaling pathway was characterized after transfection of HEK cells with human iNOS cDNA. Altogether our data show that iNOS-derived NO activates endogenous NO-sensitive GC and leads to VASP phosphorylation in HEK cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitric oxide (NO) is a cellular messenger which is mutagenic in bacteria and human TK6 cells and induces deamination of 5-methylcytosine (5meC) residues in vitro. The aims of this study were: (i) to investigate whether NO induces 5meC deamination in codon 248 of the p53 gene in cultured human bronchial epithelial cells (BEAS-2B); and (ii) to compare NO mutagenicity to that of ethylnitrosourea (ENU), a strong mutagen. Two approaches were used: (i) a novel genotypic assay, using RFLP/PCR technology on purified exon VII sequence of the p53 gene; and (ii) a phenotypic (HPRT) mutation assay using 6-thioguanine selection. BEAS-2B cells were either exposed to 4 mM DEA/NO (Et2N[N2O2]Na, an agent that spontaneously releases NO into the medium) or transfected with the inducible nitric oxide synthase (iNOS) gene. The genotypic mutation assay, which has a sensitivity of 1 x 10(-6), showed that 4 mM ENU induces detectable numbers of G --> A transitions in codon 248 of p53 while 5-methylcytosine deamination was not detected in either iNOS-transfected cells or cells exposed to 4 mM DEA/NO. Moreover, ENU was dose-responsively mutagenic in the phenotypic HPRT assay, reaching mutation frequencies of 24 and 96 times that of untreated control cells at ENU concentrations of 4 and 8 mM respectively; by contrast, 4 mM DEA/NO induced no detectable mutations in this assay, nor were any observed in cells transfected with murine iNOS. We conclude that if NO is at all promutagenic in these cells, it is significantly less so than the ethylating mutagen, ENU.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Affiliation: Centre Robert-Cedergren de l'Université de Montréal en bio-informatique et génomique & Département de biochimie, Université de Montréal

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both human and bovine prothrombin fragment 2 (the second kringle) have been cocrystallized separately with human PPACK (D-Phe-Pro-Arg)-thrombin, and the structures of these noncovalent complexes have been determined and refined (R = 0.155 and 0.157, respectively) at 3.3-Å resolution using X-ray crystallographic methods. The kringles interact with thrombin at a site that has previously been proposed to be the heparin binding region. The latter is a highly electropositive surface near the C-terminal helix of thrombin abundant in arginine and lysine residues. These form salt bridges with acidic side chains of kringle 2. Somewhat unexpectedly, the negative groups of the kringle correspond to an enlarged anionic center of the lysine binding site of lysine binding kringles such as plasminogens K1 and K4 and TPA K2. The anionic motif is DGDEE in prothrombin kringle 2. The corresponding cationic center of the lysine binding site region has an unfavorable Arg70Asp substitution, but Lys35 is conserved. However, the folding of fragment 2 is different from that of prothrombin kringle 1 and other kringles: the second outer loop possesses a distorted two-turn helix, and the hairpin β-turn of the second inner loop pivots at Val64 and Asp70 by 60°. Lys35 is located on a turn of the helix, which causes it to project into solvent space in the fragment 2-thrombin complex, thereby devastating any vestige of the cationic center of the lysine binding site. Since fragment 2 has not been reported to bind lysine, it most likely has a different inherent folding conformation for the second outer loop, as has also been observed to be the case with TPA K2 and the urokinase kringle. The movement of the Val64-Asp70 β-turn is most likely a conformational change accompanying complexation, which reveals a new heretofore unsuspected flexibility in kringles. The fragment 2-thrombin complex is only the second cassette module-catalytic domain structure to be determined for a multidomain blood protein and only the third domain-domain interaction to be described among such proteins, the others being factor Xa without a Gla domain and Ca2+ prothrombin fragment 1 with a Gla domain and a kringle. © 1993 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To assess the structural and functional significance of the N helix (residues 3-13) of avian recombinant troponin C (rTnC), we have constructed NHdel, in which residues 1-11 have been deleted, both in rTnC and in the spectral probe mutant F29W (Pearlstone, J. R., Borgford, T., Chandra, M., Oikawa, K., Kay, C. M., Herzberg, O., Moult, J., Herklotz, A., Reinach, F. C., and Smillie, L.B. (1992) Biochemistry 31, 6545-6553). Comparison of the far- and near-UV CD spectra (±Ca2+) of F29W and F29W/ NHdel and titration of the Ca2+-induced ellipticity and fluorescence changes indicates that the deletion has little effect on the global fold of the molecule but reduces the Ca2+ affinity of the N domain, but not the C domain, by 1.6-1.8-fold. Comparisons of the mutants NHdel, F29W, and F29W/NHdel with rTnC have been made using several functional assays. In reconstituted troponin-tropomyosin actomyosin subfragment 1 and myofibrillar ATPase systems, both F29W and NHdel have significantly reduced Ca2+-activated enzymic activities. These effects are cumulative in the double mutant F29W/ NHdel. On the other hand, maximal isometric tension development in Ca2+-activated reconstituted skinned fibers is not affected with F29W and NHdel, although the Ca2+ sensitivity of NHdel in this system is markedly reduced. We conclude that both mutations, NHdel and F29W, are functionally deleterious, possibly affecting interactions of the N domain with troponin I and/or T.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Granulocyte colony-stimulating factor (G-CSF) acts on precursor hematopoietic cells to control the production and maintenance of neutrophils. Recombinant G-CSF (re-G-CSF)is used clinically to treat patients with neutropenia and has greatly reduced the infection risk associated with bone marrow transplantation. Cyclic hematopoiesis, a stem cell defect characterized by severe recurrent neutropenia, occurs in man and grey collie dogs, and can be treated by administration of re-G-CSF. Availability of the rat G-CSF cDNA would benefit the use of rats as models of gene therapy for the treatment of cyclic hematopoiesis. In preliminary rat experiments, retroviral-mediated expression of canine G-CSF caused neutralizing antibody formation which precluded long-term increases in neutrophil counts. To overcome this problem we cloned the rat G-CSF cDNA from RNA isolated from skin fibroblasts. The rat G-CSF sequence shared a high degree of identity in both the coding and non-coding regions with both the murine G-CSF (85%) and human G-CSF (74%). The signal peptides of murine and human G-CSF both contained 30 amino acids (aa), whereas the deduced signal sequence for rat G-CSF possessed 21 aa. A retrovirus encoding the rat G-CSF cDNA synthesized bioactive G-CSF from transduced vascular smooth muscle cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

'SequenceSpace' analysis is a novel approach which has been used to identify unique amino acids within a subfamily of phospholipases A2 (PLA2) in which the highly conserved active site residue Asp49 is substituted by Lys (Lys49-PLA2s). Although Lys49-PLA2s do not bind the catalytic co-factor Ca2+ and possess extremely low catalytic activity, they demonstrate a Ca2+-independent membrane damaging activity through a poorly understood mechanism, which does not involve lipid hydrolysis. Additionally, Lys49-PLA2s possess combined myotoxic, oedema forming and cardiotoxic pharmacological activities, however the structural basis of these varied functions is largely unknown. Using the 'SequenceSpace' analysis we have identified nine residues highly unique to the Lys49-PLA2 sub-family, which are grouped in three amino acid clusters in the active site, hydrophobic substrate binding channel and homodimer interface regions. These three highly specific residue clusters may have relevance for the Ca2+-independent membrane damaging activity. Of a further 15 less stringently conserved residues, nine are located in two additional clusters which are well isolated from the active site region. The less strictly conserved clusters have been used in predictive sequence searches to correlate amino acid patterns in other venom PLA2s with their pharmacological activities, and motifs for presynaptic and combined toxicities are proposed.