813 resultados para Microstructure fabrication
Resumo:
Fatigue crack growth in high strength aluminium alloy 7150 commercial plate material has been studied in both laboratory air and acidified aqueous salt solution. The aggressive aqueous environment enhanced fatigue crack growth rates by up to an order in magnitude compared to laboratory air. The enhancement in fatigue crack growth rate was accompanied by evidence of embrittlement in the crack path, involving both brittle intergranular and transgranular failure modes. Both the enhancement of fatigue crack growth rates and the extent of intergranular growth modes are dependent on cyclic frequency which, along with the absence of a similar frequency effect in a spray-formed version of the material with a significantly different grain structure, supports a mechanism of grain boundary hydrogen diffusion for intergranular corrosion fatigue crack growth. The convergence of corrosion fatigue crack growth rates at high ΔK in both spray-formed and conventional plate materials coincides with the operation of identical transgranular corrosion fatigue modes dependent on strain-controlled hydrogen diffusion ahead of the crack tip. © 1997 Acta Metallurgica Inc.
Resumo:
High strength low alloy steels have been shown to be adversely affected by the existence of regions of poor impact toughness within the heat affected zone (HAZ) produced during multipass welding. One of these regions is the intercritically reheated coarse grained HAZ or intercritical zone. Since this region is generally narrow and discontinuous, of the order of 0.5 mm in width, weld simulators are often employed to produce a larger volume of uniform microstructure suitable for toughness assessment. The steel usedfor this study was a commercial quenched and tempered steel of 450 MN m -2 yield strength. Specimen blanks were subjected to a simulated welding cycle to produce a coarse grained structure of upper bainite during the first thermal cycle, followed by a second thermal cycle where the peak temperature T p2 was controlled. Charpy tests carried out for T p2 values in the range 650-850°C showed low toughness for T p2 values between 760 and 790°C, in the intercritical regime. Microstructural investigation of the development of grain boundary martensite-retained austenite (MA) phase has been coupled with image analysis to measure the volume fraction of MAformed. Most of the MA constituent appears at the prior austenite grain boundaries during intercritical heating, resulting in a 'necklace' appearance. For values of T p2 greater than 790°C the necklace appearance is lost and the second phase areas are observed throughout the structure. Concurrent with this is the development of the fine grained, predominantly ferritic structure that is associated with the improvement in toughness. At this stage the microstructure is transforming from the intercritical regime structure to the supercritically reheated coarse grained HAZ structure. The toughness improvement occurs even though the MA phase is still present, suggesting that the embrittlement is associated with the presence of a connected grain boundary network of the MA phase. The nature of the second phase particles can be controlled by the cooling rate during the second cycle and variesfrom MA phase at high cooling rates to a pearlitic structure at low cooling rates. The lowest toughness of the intercritical zone is observed only when MA phase is present. The reason suggested for this is that only the MA particles debond readily, a number of debonded particles in close proximity providing sufficient stress concentration to initiate local cleavage. © 1993 The Institute of Materials.
Resumo:
The current state of knowledge and understanding of the long fatigue crack propagation behavior of nickel-base superalloys are reviewed, with particular emphasis on turbine disk materials. The data are presented in the form of crack growth rate versus stress intensity factor range curves, and the effects of such variables as microstructure, load ratio, and temperature in the near-threshold and Paris regimes of the curves, are discussed.
Resumo:
Engineering ceramics are often difficult to prepare metallographically because of their hardness, wear resistance and chemical inertness. Two silicon carbides, a silicon nitride and a sialon, are prepared and etched using several different techniques. The most efficient methods are identified. © 1995.
Resumo:
The fracture behaviour and plane strain fracture toughness, KIC, of four 8090-based metal-matrix composites containing 20 weight % SiC particles, 3, 6 and 23 μm in diameter, has been evaluated as a function of matrix ageing condition. Toughness values are found to be almost independent of reinforcement size. Ageing at 170°C results in a monotonic decrease in toughness with increasing strength up to the peak condition, with no subsequent recovery in toughness on overageing. However, unlike reinforced 8090, the composites are not found to be susceptible to intergranular embrittlement on overageing. The observed trends are found to be independent of reinforcement size. These findings are explained in terms of the strength, work hardening behaviour and nature and distribution of void-nucleating particles in the matrix. © 1993.
Resumo:
The use of engineering materials in critical applications necessitates the accurate prediction of component lifetime for inspection and renewal purposes. In fatigue limited situations, it is necessary to be able to predict the growth rates of cracks from initiation at a defect through to final fracture. To this end, fatigue crack growth data are presented for different microstructures of typical nickel base superalloys used in gas turbine engines. Crack growth behaviour throughout the life history of the crack, i.e. from the short crack through to the long crack propagation regime, is described for each microstructural condition and discussed in terms of current theories of fatigue crack propagation.
Resumo:
Fatigue crack propagation and threshold data for two Ni-base alloys, Astroloy and Nimonic 901, are reported. At room temperature the effect which altering the load ratio (R-ratio) has on fatigue behaviour is strongly dependent on grain size. In the coarse grained microstructures crack growth rates increase and threshold values decrease markedly as R rises from 0. 1 to 0. 8, whereas only small changes in behaviour occur in fine grained material. In Astroloy, when strength level and gamma grain size are kept constant, there is very little effect of processing route and gamma prime distribution on room temperature threshold and crack propagation results. The dominant microstructural effect on this type of fatigue behaviour is the matrix ( gamma ) grain size itself.
Resumo:
Threshold stress intensity values, ranging from ∼6 to 16 MN m −3/2 can be obtained in powder-formed Nimonic AP1 by changing the microstructure. The threshold and low crack growth rate behaviour at room temperature of a number of widely differing API microstructures, with both ‘necklace’ and fully recrystallized grain structures of various sizes and uniform and bimodal γ′-distributions, have been investigated. The results indicate that grain size is an important microstructural parameter which can control threshold behaviour, with the value of threshold stress intensity increasing with increasing grain size, but that the γ′-distribution is also important. In this Ni-base alloy, as in many others, near threshold fatigue crack growth occurs in a crystallographic manner along {111} planes. This is due to the development of a dislocation structure involving persistent slip bands on {111} planes in the plastic zone, caused by the presence of ordered shearable precipitates in the microstructure. However, as the stress intensity range is increased, a striated growth mode takes over. The results presented show that this transition from faceted to striated growth is associated with a sudden increase in crack propagation rate and occurs when the size of the reverse plastic zone at the crack tip becomes equal to the grain size, independent of any other microstructural variables.
Resumo:
We review our recent work on the numerical design and optimisation of buried, micro-structured waveguides (WGs) that can be formed in a lithium niobate (LiNbO3) crystal by the method of direct femtosecond laser inscription. We also report on the possibility of fabricating such WGs using a high-repetition-rate, chirped-pulse oscillator system. Refractive index contrasts as high as -0.0127 have been achieved for individual modification tracks. The results pave the way for developing micro-structured WGs with low-loss operation across a wide spectral range, extending into the mid-infrared region up to the end of the transparency range of the host material. © 2014 IEEE.
Resumo:
As optical coherence tomography (OCT) becomes widespread, validation and characterization of systems becomes important. Reference standards are required to qualitatively and quantitatively measure the performance between difference systems. This would allow the performance degradation of the system over time to be monitored. In this report, the properties of the femtosecond inscribed structures from three different systems for making suitable OCT characterization artefacts (phantoms) are analyzed. The parameter test samples are directly inscribed inside transparent materials. The structures are characterized using an optical microscope and a swept-source OCT. The high reproducibility of the inscribed structures shows high potential for producing multi-modality OCT calibration and characterization phantoms. Such that a single artefact can be used to characterize multiple performance parameters such the resolution, linearity, distortion, and imaging depths. © 2012 SPIE.
Resumo:
We report on the first recording of a 300-nm-period structure in a permanently moving sample of a pure fused silica using the tightly-focused, 82 nJ, 267 nm, 300 fs, 1 kHz laser pulses.
Resumo:
Microfabrication of photonic devices by means of femtosecond (fs) laser pulses is reviewed. Adaptive modeling of fs laser pulse propagation was performed for detailed study of different regimes. Submicron structures are demonstrated in both infrared and UV ranges. Applications to fibre based devices and prototype integrated planar devices are discussed. © 2007 Optical Society of America.
Resumo:
We measure complex amplitude of scattered wave in the far field, and justify theoretically and numerically solution of the inverse scattering problem. This allows single-shot reconstructing of dielectric function distribution during direct femtosecond laser micro-fabrication.