Parametric study of femtosecond inscription of microstructures for OCT artefact fabrication
Contribuinte(s) |
Izatt, Joseph A. Fujimoto, James G. Tuchin, Valery V. |
---|---|
Data(s) |
2012
|
Resumo |
As optical coherence tomography (OCT) becomes widespread, validation and characterization of systems becomes important. Reference standards are required to qualitatively and quantitatively measure the performance between difference systems. This would allow the performance degradation of the system over time to be monitored. In this report, the properties of the femtosecond inscribed structures from three different systems for making suitable OCT characterization artefacts (phantoms) are analyzed. The parameter test samples are directly inscribed inside transparent materials. The structures are characterized using an optical microscope and a swept-source OCT. The high reproducibility of the inscribed structures shows high potential for producing multi-modality OCT calibration and characterization phantoms. Such that a single artefact can be used to characterize multiple performance parameters such the resolution, linearity, distortion, and imaging depths. © 2012 SPIE. |
Formato |
application/pdf |
Identificador |
Rasakanthan, Janarthanan; Lee, Graham Chun Bon; Woolliams, Peter D. and Sugden, Kate (2012). Parametric study of femtosecond inscription of microstructures for OCT artefact fabrication. IN: Optical coherence tomography and coherence domain optical methods in biomedicine XVI. Izatt, Joseph A.; Fujimoto, James G. and Tuchin, Valery V. (eds) SPIE proceedings . Bellingham, WA (US): SPIE. |
Publicador |
SPIE |
Relação |
http://eprints.aston.ac.uk/23878/ |
Tipo |
Book Section NonPeerReviewed |