974 resultados para Meyer rod
Resumo:
Infrared spectroscopy has been used to study nano to micro sized gallium oxyhydroxide α-GaO(OH), prepared using a low temperature hydrothermal route. Rod-like α-GaO(OH) crystals with average length of ~2.5 μm and width of 1.5 μm were prepared when the initial molar ratio of Ga to OH was 1:3. β-Ga2O3 nano and micro-rods were prepared through the calcination of α-GaO(OH) The initial morphology of α-GaO(OH) is retained in the β-Ga2O3 nanorods. The combination of infrared and infrared emission spectroscopy complimented with dynamic thermal analysis were used to characterise the α-GaO(OH) nanotubes and the formation of β-Ga2O3 nanorods. Bands at around 2903 and 2836 cm-1 are assigned to the -OH stretching vibration of α-GaO(OH) nanorods. Infrared bands at around 952 and 1026 cm-1 are assigned to the Ga-OH deformation modes of α-GaO(OH). A significant number of bands are observed in the 620 to 725 cm-1 region and are assigned to GaO stretching vibrations.
Resumo:
Technology is continually changing, and evolving, throughout the entire construction industry; and particularly in the design process. One of the principal manifestations of this is a move away from team working in a shared work space to team working in a virtual space, using increasingly sophisticated electronic media. Due to the significant operating differences when working in shared and virtual spaces adjustments to generic skills utilised by members is a necessity when moving between the two conditions. This paper reports an aspect of a CRC-CI research project based on research of ‘generic skills’ used by individuals and teams when engaging with high bandwidth information and communication technologies (ICT). It aligns with the project’s other two aspects of collaboration in virtual environments: ‘processes’ and ‘models’. The entire project focuses on the early stages of a project (i.e. design) in which models for the project are being developed and revised. The paper summarises the first stage of the research project which reviews literature to identify factors of virtual teaming which may affect team member skills. It concludes that design team participants require ‘appropriate skills’ to function efficiently and effectively, and that the introduction of high band-width technologies reinforces the need for skills mapping and measurement.
Resumo:
Scoliosis is a spinal deformity, involving a side-to-side curvature of the spine in the coronal plane as well as a rotation of the spinal column in the transverse plane. The coronal curvature is measured using a Cobb angle. If the deformity is severe, treatment for scoliosis may require surgical intervention whereby a rod is attached to the spinal column to correct the abnormal curvature. In order to provide surgeons with an improved ability to predict the likely outcomes following surgery, techniques to create patient-specific finite element models (FEM) of scoliosis patients treated at the Mater Children’s Hospital (MCH) in Brisbane are being developed and validated. This paper presents a comparison of the simulated and clinical data for a scoliosis patient treated at MCH.
Resumo:
Aim – To develop and assess the predictive capabilities of a statistical model that relates routinely collected Trauma Injury Severity Score (TRISS) variables to length of hospital stay (LOS) in survivors of traumatic injury. Method – Retrospective cohort study of adults who sustained a serious traumatic injury, and who survived until discharge from Auckland City, Middlemore, Waikato, or North Shore Hospitals between 2002 and 2006. Cubic-root transformed LOS was analysed using two-level mixed-effects regression models. Results – 1498 eligible patients were identified, 1446 (97%) injured from a blunt mechanism and 52 (3%) from a penetrating mechanism. For blunt mechanism trauma, 1096 (76%) were male, average age was 37 years (range: 15-94 years), and LOS and TRISS score information was available for 1362 patients. Spearman’s correlation and the median absolute prediction error between LOS and the original TRISS model was ρ=0.31 and 10.8 days, respectively, and between LOS and the final multivariable two-level mixed-effects regression model was ρ=0.38 and 6.0 days, respectively. Insufficient data were available for the analysis of penetrating mechanism models. Conclusions – Neither the original TRISS model nor the refined model has sufficient ability to accurately or reliably predict LOS. Additional predictor variables for LOS and other indicators for morbidity need to be considered.
Resumo:
Aims – To develop local contemporary coefficients for the Trauma Injury Severity Score in New Zealand, TRISS(NZ), and to evaluate their performance at predicting survival against the original TRISS coefficients. Methods – Retrospective cohort study of adults who sustained a serious traumatic injury, and who survived until presentation at Auckland City, Middlemore, Waikato, or North Shore Hospitals between 2002 and 2006. Coefficients were estimated using ordinary and multilevel mixed-effects logistic regression models. Results – 1735 eligible patients were identified, 1672 (96%) injured from a blunt mechanism and 63 (4%) from a penetrating mechanism. For blunt mechanism trauma, 1250 (75%) were male and average age was 38 years (range: 15-94 years). TRISS information was available for 1565 patients of whom 204 (13%) died. Area under the Receiver Operating Characteristic (ROC) curves was 0.901 (95%CI: 0.879-0.923) for the TRISS(NZ) model and 0.890 (95% CI: 0.866-0.913) for TRISS (P<0.001). Insufficient data were available to determine coefficients for penetrating mechanism TRISS(NZ) models. Conclusions – Both TRISS models accurately predicted survival for blunt mechanism trauma. However, TRISS(NZ) coefficients were statistically superior to TRISS coefficients. A strong case exists for replacing TRISS coefficients in the New Zealand benchmarking software with these updated TRISS(NZ) estimates.
Resumo:
Purpose: In this research we examined, by means of case studies, the mechanisms by which relationships can be managed and by which communication and cooperation can be enhanced in sustainable supply chains. The research was predicated on the contention that the development of a sustainable supply chain depends, in part, on the transfer of knowledge and capabilities from the larger players in the supply chain. Design/Methodology/Approach: The research adopted a triangulated approach in which quantitative data were collected by questionnaire, interviews were conducted to explore and enrich the quantitative data and case studies were undertaken in order to illustrate and validate the findings. Handy‟s (1985) view of organisational culture, Allen & Meyer‟s (1990) concepts of organisational commitment and Van de Ven & Ferry‟s (1980) measures of organisational structuring have been combined into a model to test and explain how collaborative mechanisms can affect supply chain sustainability. Findings: It has been shown that the degree of match and mismatch between organisational culture and structure has an impact on staff‟s commitment level. A sustainable supply chain depends on convergence – that is the match between organisational structuring, organisation culture and organisation commitment. Research Limitations/implications: The study is a proof of concept and three case studies have been used to illustrate the nature of the model developed. Further testing and refinement of the model in practice should be the next step in this research. Practical implications: The concept of relationship management needs to filter down to all levels in the supply chain if participants are to retain commitment and buy-in to the relationship. A sustainable supply chain requires proactive relationship management and the development of an appropriate organisational culture, and trust. By legitimising individuals‟ expectations of the type of culture which is appropriate to their company and empowering employees to address mismatches that may occur a situation can be created whereby the collaborating organisations develop their competences symbiotically and so facilitate a sustainable supply chain. Originality/value: The culture/commitment/structure model developed from three separate strands of management thought has proved to be a powerful tool for analysing collaboration in supply chains and explaining how and why some supply chains are sustainable, and others are not.
Resumo:
This paper is a deductive theoretical enquiry into the flow of effects from the geometry of price bubbles/busts, to price indices, to pricing behaviours of sellers and buyers, and back to price bubbles/busts. The intent of the analysis is to suggest analytical approaches to identify the presence, maturity, and/or sustainability of a price bubble. We present a pricing model to emulate market behaviour, including numeric examples and charts of the interaction of supply and demand. The model extends into dynamic market solutions myopic (single- and multi-period) backward looking rational expectations to demonstrate how buyers and sellers interact to affect supply and demand and to show how capital gain expectations can be a destabilising influence – i.e. the lagged effects of past price gains can drive the market price away from long-run market-worth. Investing based on the outputs of past price-based valuation models appear to be more of a game-of-chance than a sound investment strategy.
Resumo:
We report on an inter-comparison of six different hygroscopicity tandem differential mobility analysers (HTDMAs). These HTDMAs are used worldwide in laboratories and in field campaigns to measure the water uptake of aerosol particles and were never intercompared. After an investigation of the different design of the instruments with their advantages and inconveniencies, the methods for calibration, validation and analysis are presented. Measurements of nebulised ammonium sulphate as well as of secondary organic aerosol generated from a smog chamber were performed. Agreement and discrepancies between the instrument and to the theory are discussed, and final recommendations for a standard instrument are given, as a benchmark for laboratory or field experiments to ensure a high quality of HTDMA data.
Theoretical and numerical investigation of plasmon nanofocusing in metallic tapered rods and grooves
Resumo:
Effective focusing of electromagnetic (EM) energy to nanoscale regions is one of the major challenges in nano-photonics and plasmonics. The strong localization of the optical energy into regions much smaller than allowed by the diffraction limit, also called nanofocusing, offers promising applications in nano-sensor technology, nanofabrication, near-field optics or spectroscopy. One of the most promising solutions to the problem of efficient nanofocusing is related to surface plasmon propagation in metallic structures. Metallic tapered rods, commonly used as probes in near field microscopy and spectroscopy, are of a particular interest. They can provide very strong EM field enhancement at the tip due to surface plasmons (SP’s) propagating towards the tip of the tapered metal rod. A large number of studies have been devoted to the manufacturing process of tapered rods or tapered fibers coated by a metal film. On the other hand, structures such as metallic V-grooves or metal wedges can also provide strong electric field enhancements but manufacturing of these structures is still a challenge. It has been shown, however, that the attainable electric field enhancement at the apex in the V-groove is higher than at the tip of a metal tapered rod when the dissipation level in the metal is strong. Metallic V-grooves also have very promising characteristics as plasmonic waveguides. This thesis will present a thorough theoretical and numerical investigation of nanofocusing during plasmon propagation along a metal tapered rod and into a metallic V-groove. Optimal structural parameters including optimal taper angle, taper length and shape of the taper are determined in order to achieve maximum field enhancement factors at the tip of the nanofocusing structure. An analytical investigation of plasmon nanofocusing by metal tapered rods is carried out by means of the geometric optics approximation (GOA), which is also called adiabatic nanofocusing. However, GOA is applicable only for analysing tapered structures with small taper angles and without considering a terminating tip structure in order to neglect reflections. Rigorous numerical methods are employed for analysing non-adiabatic nanofocusing, by tapered rod and V-grooves with larger taper angles and with a rounded tip. These structures cannot be studied by analytical methods due to the presence of reflected waves from the taper section, the tip and also from (artificial) computational boundaries. A new method is introduced to combine the advantages of GOA and rigorous numerical methods in order to reduce significantly the use of computational resources and yet achieve accurate results for the analysis of large tapered structures, within reasonable calculation time. Detailed comparison between GOA and rigorous numerical methods will be carried out in order to find the critical taper angle of the tapered structures at which GOA is still applicable. It will be demonstrated that optimal taper angles, at which maximum field enhancements occur, coincide with the critical angles, at which GOA is still applicable. It will be shown that the applicability of GOA can be substantially expanded to include structures which could be analysed previously by numerical methods only. The influence of the rounded tip, the taper angle and the role of dissipation onto the plasmon field distribution along the tapered rod and near the tip will be analysed analytically and numerically in detail. It will be demonstrated that electric field enhancement factors of up to ~ 2500 within nanoscale regions are predicted. These are sufficient, for instance, to detect single molecules using surface enhanced Raman spectroscopy (SERS) with the tip of a tapered rod, an approach also known as tip enhanced Raman spectroscopy or TERS. The results obtained in this project will be important for applications for which strong local field enhancement factors are crucial for the performance of devices such as near field microscopes or spectroscopy. The optimal design of nanofocusing structures, at which the delivery of electromagnetic energy to the nanometer region is most efficient, will lead to new applications in near field sensors, near field measuring technology, or generation of nanometer sized energy sources. This includes: applications in tip enhanced Raman spectroscopy (TERS); manipulation of nanoparticles and molecules; efficient coupling of optical energy into and out of plasmonic circuits; second harmonic generation in non-linear optics; or delivery of energy to quantum dots, for instance, for quantum computations.
Resumo:
Reflection Questions • How does the collaborative reading workshop approach engage students in higher order thinking and deep engagement with text? • How does the collaborative reading workshop approach support students to be active citizens and critically literate? • How does the interaction and collaborative thinking in this approach contribute to the students’ intellectual engagement and the teacher’s pedagogical rigor? • How could this approach be implemented or adapted at your school?
Resumo:
One of the definitions of the term myth is ‘an unproved or false collective belief that is used to justify a social institution’ (see http://dictionary.reference.com/browse/myth). Before we are criticized for suggesting such an irreverent thought might apply to tourism academia, readers must recognize that organizations and industries often operate using shared collective myths (see Meyer and Rowan 1977). Institutionalized rules and processes function as myths that provide legitimacy. The question of interest in this paper is not in the context of the quality of tourism academic research output, which is addressed by other papers in this research probe section. Rather, of importance is enhancing understanding of the extent to which our collective knowledge, legitimized through publishing in peer reviewed academic publications, is proving of value to industry stakeholders, an axiom that appears to be largely unquestioned and unproven.
Resumo:
Scoliosis is a three-dimensional spinal deformity which requires surgical correction in progressive cases. In order to optimize correction and avoid complications following scoliosis surgery, patient-specific finite element models (FEM) are being developed and validated by our group. In this paper, the modeling methodology is described and two clinically relevant load cases are simulated for a single patient. Firstly, a pre-operative patient flexibility assessment, the fulcrum bending radiograph, is simulated to assess the model's ability to represent spine flexibility. Secondly, intra-operative forces during single rod anterior correction are simulated. Clinically, the patient had an initial Cobb angle of 44 degrees, which reduced to 26 degrees during fulcrum bending. Surgically, the coronal deformity corrected to 14 degrees. The simulated initial Cobb angle was 40 degrees, which reduced to 23 degrees following the fulcrum bending load case. The simulated surgical procedure corrected the coronal deformity to 14 degrees. The computed results for the patient-specific FEM are within the accepted clinical Cobb measuring error of 5 degrees, suggested that this modeling methodology is capable of capturing the biomechanical behaviour of a scoliotic human spine during anterior corrective surgery.
Resumo:
Over the past decade, Thai schools have been encouraged by the Thai Ministry of Education to introduce more student-centred pedagogies such as cooperative learning into their classrooms (Carter, 2006). However, prior research has indicated that the implementation of cooperative learning into Thai schools has been confounded by cultural traditions endemic within Thai schools (Deveney, 2005). The purpose of the study was to investigate how 32 Grade 3 and 32 Grade 4 students enrolled in a Thai school engaged with cooperative learning in mathematics classrooms after they had been taught cooperative learning strategies and skills. These strategies and skills were derived from a conceptual framework that was the outcome of an analysis and synthesis of social learning, behaviourist and socio-cognitive theories found in the research literature. The intervention began with a two week program during which the students were introduced to and engaged in practicing a set of cooperative learning strategies and skills (3 times a week). Then during the next four weeks (3 times a week), these cooperative learning strategies and skills were applied in the contexts of two units of mathematics lessons. A survey of student attitudes with respect to their engagement in cooperative learning was conducted at the conclusion of the six-week intervention. The results from the analysis of the survey data were triangulated with the results derived from the analysis of data from classroom observations and teacher interviews. The analysis of data identified four complementary processes that need to be considered by Thai teachers attempting to implement cooperative learning into their mathematics classrooms. The paper concludes with a set of criteria derived from the results of the study to guide Thai teachers intending to implement cooperative learning strategies and skills in their classrooms.
Resumo:
Background: There is a sound rationale for the population-based approach to falls injury prevention but there is currently insufficient evidence to advise governments and communities on how they can use population-based strategies to achieve desired reductions in the burden of falls-related injury.---------- Aim: To quantify the effectiveness of a streamlined (and thus potentially sustainable and cost-effective), population-based, multi-factorial falls injury prevention program for people over 60 years of age.---------- Methods: Population-based falls-prevention interventions were conducted at two geographically-defined and separate Australian sites: Wide Bay, Queensland, and Northern Rivers, NSW. Changes in the prevalence of key risk factors and changes in rates of injury outcomes within each community were compared before and after program implementation and changes in rates of injury outcomes in each community were also compared with the rates in their respective States.---------- Results: The interventions in neither community substantially decreased the rate of falls-related injury among people aged 60 years or older, although there was some evidence of reductions in occurrence of multiple falls reported by women. In addition, there was some indication of improvements in fall-related risk factors, but the magnitudes were generally modest.---------- Conclusion: The evidence suggests that low intensity population-based falls prevention programs may not be as effective as those are intensively implemented.
Resumo:
This paper presents the findings of an investigation into the rate-limiting mechanism for the heterogeneous burning in oxygen under normal gravity and microgravity of cylindrical iron rods. The original objective of the work was to determine why the observed melting rate for burning 3.2-mm diameter iron rods is significantly higher in microgravity than in normal gravity. This work, however, also provided fundamental insight into the rate-limiting mechanism for heterogeneous burning. The paper includes a summary of normal-gravity and microgravity experimental results, heat transfer analysis and post-test microanalysis of quenched samples. These results are then used to show that heat transfer across the solid/liquid interface is the rate-limiting mechanism for melting and burning, limited by the interfacial surface area between the molten drop and solid rod. In normal gravity, the work improves the understanding of trends reported during standard flammability testing for metallic materials, such as variations in melting rates between test specimens with the same cross-sectional area but different crosssectional shape. The work also provides insight into the effects of configuration and orientation, leading to an improved application of standard test results in the design of oxygen system components. For microgravity applications, the work enables the development of improved methods for lower cost metallic material flammability testing programs. In these ways, the work provides fundamental insight into the heterogeneous burning process and contributes to improved fire safety for oxygen systems in applications involving both normal-gravity and microgravity environments.