804 resultados para Machine Learning Techniques
Resumo:
A resistência a múltiplos fármacos é um grande problema na terapia anti-cancerígena, sendo a glicoproteína-P (P-gp) uma das responsáveis por esta resistência. A realização deste trabalho incidiu principalmente no desenvolvimento de modelos matemáticos/estatísticos e “químicos”. Para os modelos matemáticos/estatísticos utilizamos métodos de Machine Learning como o Support Vector Machine (SVM) e o Random Forest, (RF) em relação aos modelos químicos utilizou-se farmacóforos. Os métodos acima mencionados foram aplicados a diversas proteínas P-gp, p53 e complexo p53-MDM2, utilizando duas famílias: as pifitrinas para a p53 e flavonóides para P-gp e, em menor medida, um grupo diversificado de moléculas de diversas famílias químicas. Nos modelos obtidos pelo SVM quando aplicados à P-gp e à família dos flavonóides, obtivemos bons valores através do kernel Radial Basis Function (RBF), com precisão de conjunto de treino de 94% e especificidade de 96%. Quanto ao conjunto de teste com previsão de 70% e especificidade de 67%, sendo que o número de falsos negativos foi o mais baixo comparativamente aos restantes kernels. Aplicando o RF à família dos flavonóides verificou-se que o conjunto de treino apresenta 86% de precisão e uma especificidade de 90%, quanto ao conjunto de teste obtivemos uma previsão de 70% e uma especificidade de 60%, existindo a particularidade de o número de falsos negativos ser o mais baixo. Repetindo o procedimento anterior (RF) e utilizando um total de 63 descritores, os resultados apresentaram valores inferiores obtendo-se para o conjunto de treino 79% de precisão e 82% de especificidade. Aplicando o modelo ao conjunto de teste obteve-se 70% de previsão e 60% de especificidade. Comparando os dois métodos, escolhemos o método SVM com o kernel RBF como modelo que nos garante os melhores resultados de classificação. Aplicamos o método SVM à P-gp e a um conjunto de moléculas não flavonóides que são transportados pela P-gp, obteve-se bons valores através do kernel RBF, com precisão de conjunto de treino de 95% e especificidade de 93%. Quanto ao conjunto de teste, obtivemos uma previsão de 70% e uma especificidade de 69%, existindo a particularidade de o número de falsos negativos ser o mais baixo. Aplicou-se o método do farmacóforo a três alvos, sendo estes, um conjunto de inibidores flavonóides e de substratos não flavonóides para a P-gp, um grupo de piftrinas para a p53 e um conjunto diversificado de estruturas para a ligação da p53-MDM2. Em cada um dos quatro modelos de farmacóforos obtidos identificou-se três características, sendo que as características referentes ao anel aromático e ao dador de ligações de hidrogénio estão presentes em todos os modelos obtidos. Realizando o rastreio em diversas bases de dados utilizando os modelos, obtivemos hits com uma grande diversidade estrutural.
Resumo:
O presente trabalho teve como objetivo determinar quais variáveis dimensionais da folha são mais adequadas para utilização na estimativa da área foliar do antúrio (Anthurium andraeanum), cv. Apalai, por meio de equação de regressão linear, e comparar o desempenho de diferentes funções de regressão obtidas com o uso de aprendizado de máquina (AM). A variável que melhor estimou a área foliar foi o produto das dimensões lineares (comprimento e largura), CxL, sendo a equação proposta Af = 0.9672 *C x L, com coeficiente de determinação (R²) de 0,99. Verificou-se, também, com o uso de AM, que as funções lineares são mais adequadas para a estimação da área foliar dessa espécie vegetal.
Resumo:
The industrial automation is directly linked to the development of information tecnology. Better hardware solutions, as well as improvements in software development methodologies make possible the rapid growth of the productive process control. In this thesis, we propose an architecture that will allow the joining of two technologies in hardware (industrial network) and software field (multiagent systems). The objective of this proposal is to join those technologies in a multiagent architecture to allow control strategies implementations in to field devices. With this, we intend develop an agents architecture to detect and solve problems which may occur in the industrial network environment. Our work ally machine learning with industrial context, become proposed multiagent architecture adaptable to unfamiliar or unexpected production environment. We used neural networks and presented an allocation strategies of these networks in industrial network field devices. With this we intend to improve decision support at plant level and allow operations human intervention independent
Resumo:
The Support Vector Machines (SVM) has attracted increasing attention in machine learning area, particularly on classification and patterns recognition. However, in some cases it is not easy to determinate accurately the class which given pattern belongs. This thesis involves the construction of a intervalar pattern classifier using SVM in association with intervalar theory, in order to model the separation of a pattern set between distinct classes with precision, aiming to obtain an optimized separation capable to treat imprecisions contained in the initial data and generated during the computational processing. The SVM is a linear machine. In order to allow it to solve real-world problems (usually nonlinear problems), it is necessary to treat the pattern set, know as input set, transforming from nonlinear nature to linear problem. The kernel machines are responsible to do this mapping. To create the intervalar extension of SVM, both for linear and nonlinear problems, it was necessary define intervalar kernel and the Mercer s theorem (which caracterize a kernel function) to intervalar function
Resumo:
A neuro-fuzzy system consists of two or more control techniques in only one structure. The main characteristic of this structure is joining one or more good aspects from each technique to make a hybrid controller. This controller can be based in Fuzzy systems, artificial Neural Networks, Genetics Algorithms or rein forced learning techniques. Neuro-fuzzy systems have been shown as a promising technique in industrial applications. Two models of neuro-fuzzy systems were developed, an ANFIS model and a NEFCON model. Both models were applied to control a ball and beam system and they had their results and needed changes commented. Choose of inputs to controllers and the algorithms used to learning, among other information about the hybrid systems, were commented. The results show the changes in structure after learning and the conditions to use each one controller based on theirs characteristics
Resumo:
Reinforcement learning is a machine learning technique that, although finding a large number of applications, maybe is yet to reach its full potential. One of the inadequately tested possibilities is the use of reinforcement learning in combination with other methods for the solution of pattern classification problems. It is well documented in the literature the problems that support vector machine ensembles face in terms of generalization capacity. Algorithms such as Adaboost do not deal appropriately with the imbalances that arise in those situations. Several alternatives have been proposed, with varying degrees of success. This dissertation presents a new approach to building committees of support vector machines. The presented algorithm combines Adaboost algorithm with a layer of reinforcement learning to adjust committee parameters in order to avoid that imbalances on the committee components affect the generalization performance of the final hypothesis. Comparisons were made with ensembles using and not using the reinforcement learning layer, testing benchmark data sets widely known in area of pattern classification
Resumo:
The pattern classification is one of the machine learning subareas that has the most outstanding. Among the various approaches to solve pattern classification problems, the Support Vector Machines (SVM) receive great emphasis, due to its ease of use and good generalization performance. The Least Squares formulation of SVM (LS-SVM) finds the solution by solving a set of linear equations instead of quadratic programming implemented in SVM. The LS-SVMs provide some free parameters that have to be correctly chosen to achieve satisfactory results in a given task. Despite the LS-SVMs having high performance, lots of tools have been developed to improve them, mainly the development of new classifying methods and the employment of ensembles, in other words, a combination of several classifiers. In this work, our proposal is to use an ensemble and a Genetic Algorithm (GA), search algorithm based on the evolution of species, to enhance the LSSVM classification. In the construction of this ensemble, we use a random selection of attributes of the original problem, which it splits the original problem into smaller ones where each classifier will act. So, we apply a genetic algorithm to find effective values of the LS-SVM parameters and also to find a weight vector, measuring the importance of each machine in the final classification. Finally, the final classification is obtained by a linear combination of the decision values of the LS-SVMs with the weight vector. We used several classification problems, taken as benchmarks to evaluate the performance of the algorithm and compared the results with other classifiers
Resumo:
This research deals with textualization issues present in educational forums in distance learning environment. The research aims to analyze textualization regarding communication practices between tutors and distance learning students. Specifically the research aims to verify if the educational forum is considered pertinent for knowledge construction as well as identify subject´s behavior in e-Proinfo environment. The research also aims to understand the dynamics of the teaching and learning techniques related to the forum´s printed material. This is done in order to acknowledge discourse on behalf of subjects through the presented educational assignments. In order to address the issue, the work dealt with the relations present in distance learning forums, the forms in which the assignments are made, the way social actors interact and how this debate happens in the virtual environment. The research emphasized an educational forum used in a higher education institution at Rio Grande do Norte/Brazil. Thus the research corpus is composed by messages that were posted in the forum in the module called computer material . This module is one of the last in a set of six modules that are part of The Basic Cycle for Media Training promoted by the Center for Distance Learning in a public university at Rio Grande do Norte/Brazil. The research deals with a qualitative type approach in the perspectives of Merriam (1988), Cresswell (1994) and Minayo (1996). In order to achieve this analysis, the research dealt with theoretical landmarks related to distance learning present in (Silva, 2008; Brait, 1993; Sperbe and Wilson, 1986; Marquesi and Elias 2008 as well as Xavier, 2005, amongst others. As for aspects related to media and technological perspectives present in the forum, the research dealt with (Baranov, 1989; Neuner, 1981; Kearsley and Moore, 1996). Textualization was dealt according to (Marcuschi, 2008; Costa Val, 2004) and the conceptions and functions regarding tutors was seen according to (Salgado, 2002). In the conclusion and recommendations it was seen that these discussions present relevant contributions to distance learning and go beyond the practical universe present in electronical interaction. In the final considerations it is pointed out that this research is relevant for areas such as applied linguistics and presents guidelines for those involved in continuous education and aim meaningful knowledge that is coherent with distance learning education
Resumo:
Traditional applications of feature selection in areas such as data mining, machine learning and pattern recognition aim to improve the accuracy and to reduce the computational cost of the model. It is done through the removal of redundant, irrelevant or noisy data, finding a representative subset of data that reduces its dimensionality without loss of performance. With the development of research in ensemble of classifiers and the verification that this type of model has better performance than the individual models, if the base classifiers are diverse, comes a new field of application to the research of feature selection. In this new field, it is desired to find diverse subsets of features for the construction of base classifiers for the ensemble systems. This work proposes an approach that maximizes the diversity of the ensembles by selecting subsets of features using a model independent of the learning algorithm and with low computational cost. This is done using bio-inspired metaheuristics with evaluation filter-based criteria
Resumo:
The identification of genes essential for survival is important for the understanding of the minimal requirements for cellular life and for drug design. As experimental studies with the purpose of building a catalog of essential genes for a given organism are time-consuming and laborious, a computational approach which could predict gene essentiality with high accuracy would be of great value. We present here a novel computational approach, called NTPGE (Network Topology-based Prediction of Gene Essentiality), that relies on the network topology features of a gene to estimate its essentiality. The first step of NTPGE is to construct the integrated molecular network for a given organism comprising protein physical, metabolic and transcriptional regulation interactions. The second step consists in training a decision-tree-based machine-learning algorithm on known essential and non-essential genes of the organism of interest, considering as learning attributes the network topology information for each of these genes. Finally, the decision-tree classifier generated is applied to the set of genes of this organism to estimate essentiality for each gene. We applied the NTPGE approach for discovering the essential genes in Escherichia coli and then assessed its performance. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Redes neurais pulsadas - redes que utilizam uma codificação temporal da informação - têm despontado como uma promissora abordagem dentro do paradigma conexionista, emergente da ciência cognitiva. Um desses novos modelos é a rede neural pulsada com função de base radial, que é capaz de armazenar informação nos tempos de atraso axonais dos neurônios. Um algoritmo de aprendizado foi aplicado com sucesso nesta rede pulsada, que se mostrou capaz de mapear uma seqüência de pulsos de entrada em uma seqüência de pulsos de saída. Mais recentemente, um método baseado no uso de campos receptivos gaussianos foi proposto para codificar dados constantes em uma seqüência de pulsos temporais. Este método tornou possível a essa rede lidar com dados computacionais. O processo de aprendizado desta nova rede não se encontra plenamente compreendido e investigações mais profundas são necessárias para situar este modelo dentro do contexto do aprendizado de máquinas e também para estabelecer as habilidades e limitações desta rede. Este trabalho apresenta uma investigação desse novo classificador e um estudo de sua capacidade de agrupar dados em três dimensões, particularmente procurando estabelecer seus domínios de aplicação e horizontes no campo da visão computacional.
Resumo:
This paper presents some results of the application on Evolvable Hardware (EHW) in the area of voice recognition. Evolvable Hardware is able to change inner connections, using genetic learning techniques, adapting its own functionality to external condition changing. This technique became feasible by the improvement of the Programmable Logic Devices. Nowadays, it is possible to have, in a single device, the ability to change, on-line and in real-time, part of its own circuit. This work proposes a reconfigurable architecture of a system that is able to receive voice commands to execute special tasks as, to help handicapped persons in their daily home routines. The idea is to collect several voice samples, process them through algorithms based on Mel - Ceptrais theory to obtain their numerical coefficients for each sample, which, compose the universe of search used by genetic algorithm. The voice patterns considered, are limited to seven sustained Portuguese vowel phonemes (a, eh, e, i, oh, o, u).
Resumo:
Most of the tasks in genome annotation can be at least partially automated. Since this annotation is time-consuming, facilitating some parts of the process - thus freeing the specialist to carry out more valuable tasks - has been the motivation of many tools and annotation environments. In particular, annotation of protein function can benefit from knowledge about enzymatic processes. The use of sequence homology alone is not a good approach to derive this knowledge when there are only a few homologues of the sequence to be annotated. The alternative is to use motifs. This paper uses a symbolic machine learning approach to derive rules for the classification of enzymes according to the Enzyme Commission (EC). Our results show that, for the top class, the average global classification error is 3.13%. Our technique also produces a set of rules relating structural to functional information, which is important to understand the protein tridimensional structure and determine its biological function. © 2009 Springer Berlin Heidelberg.
Resumo:
Some machine learning methods do not exploit contextual information in the process of discovering, describing and recognizing patterns. However, spatial/temporal neighboring samples are likely to have same behavior. Here, we propose an approach which unifies a supervised learning algorithm - namely Optimum-Path Forest - together with a Markov Random Field in order to build a prior model holding a spatial smoothness assumption, which takes into account the contextual information for classification purposes. We show its robustness for brain tissue classification over some images of the well-known dataset IBSR. © 2013 Springer-Verlag.