875 resultados para Machine Learning Robotics Artificial Intelligence Bayesian Networks
Resumo:
SQL Injection Attack (SQLIA) remains a technique used by a computer network intruder to pilfer an organisation’s confidential data. This is done by an intruder re-crafting web form’s input and query strings used in web requests with malicious intent to compromise the security of an organisation’s confidential data stored at the back-end database. The database is the most valuable data source, and thus, intruders are unrelenting in constantly evolving new techniques to bypass the signature’s solutions currently provided in Web Application Firewalls (WAF) to mitigate SQLIA. There is therefore a need for an automated scalable methodology in the pre-processing of SQLIA features fit for a supervised learning model. However, obtaining a ready-made scalable dataset that is feature engineered with numerical attributes dataset items to train Artificial Neural Network (ANN) and Machine Leaning (ML) models is a known issue in applying artificial intelligence to effectively address ever evolving novel SQLIA signatures. This proposed approach applies numerical attributes encoding ontology to encode features (both legitimate web requests and SQLIA) to numerical data items as to extract scalable dataset for input to a supervised learning model in moving towards a ML SQLIA detection and prevention model. In numerical attributes encoding of features, the proposed model explores a hybrid of static and dynamic pattern matching by implementing a Non-Deterministic Finite Automaton (NFA). This combined with proxy and SQL parser Application Programming Interface (API) to intercept and parse web requests in transition to the back-end database. In developing a solution to address SQLIA, this model allows processed web requests at the proxy deemed to contain injected query string to be excluded from reaching the target back-end database. This paper is intended for evaluating the performance metrics of a dataset obtained by numerical encoding of features ontology in Microsoft Azure Machine Learning (MAML) studio using Two-Class Support Vector Machines (TCSVM) binary classifier. This methodology then forms the subject of the empirical evaluation.
Resumo:
Recent developments in automation, robotics and artificial intelligence have given a push to a wider usage of these technologies in recent years, and nowadays, driverless transport systems are already state-of-the-art on certain legs of transportation. This has given a push for the maritime industry to join the advancement. The case organisation, AAWA initiative, is a joint industry-academia research consortium with the objective of developing readiness for the first commercial autonomous solutions, exploiting state-of-the-art autonomous and remote technology. The initiative develops both autonomous and remote operation technology for navigation, machinery, and all on-board operating systems. The aim of this study is to develop a model with which to estimate and forecast the operational costs, and thus enable comparisons between manned and autonomous cargo vessels. The building process of the model is also described and discussed. Furthermore, the model’s aim is to track and identify the critical success factors of the chosen ship design, and to enable monitoring and tracking of the incurred operational costs as the life cycle of the vessel progresses. The study adopts the constructive research approach, as the aim is to develop a construct to meet the needs of a case organisation. Data has been collected through discussions and meeting with consortium members and researchers, as well as through written and internal communications material. The model itself is built using activity-based life cycle costing, which enables both realistic cost estimation and forecasting, as well as the identification of critical success factors due to the process-orientation adopted from activity-based costing and the statistical nature of Monte Carlo simulation techniques. As the model was able to meet the multiple aims set for it, and the case organisation was satisfied with it, it could be argued that activity-based life cycle costing is the method with which to conduct cost estimation and forecasting in the case of autonomous cargo vessels. The model was able to perform the cost analysis and forecasting, as well as to trace the critical success factors. Later on, it also enabled, albeit hypothetically, monitoring and tracking of the incurred costs. By collecting costs this way, it was argued that the activity-based LCC model is able facilitate learning from and continuous improvement of the autonomous vessel. As with the building process of the model, an individual approach was chosen, while still using the implementation and model building steps presented in existing literature. This was due to two factors: the nature of the model and – perhaps even more importantly – the nature of the case organisation. Furthermore, the loosely organised network structure means that knowing the case organisation and its aims is of great importance when conducting a constructive research.
Resumo:
In this research work, a new routing protocol for Opportunistic Networks is presented. The proposed protocol is called PSONET (PSO for Opportunistic Networks) since the proposal uses a hybrid system composed of a Particle Swarm Optimization algorithm (PSO). The main motivation for using the PSO is to take advantage of its search based on individuals and their learning adaptation. The PSONET uses the Particle Swarm Optimization technique to drive the network traffic through of a good subset of forwarders messages. The PSONET analyzes network communication conditions, detecting whether each node has sparse or dense connections and thus make better decisions about routing messages. The PSONET protocol is compared with the Epidemic and PROPHET protocols in three different scenarios of mobility: a mobility model based in activities, which simulates the everyday life of people in their work activities, leisure and rest; a mobility model based on a community of people, which simulates a group of people in their communities, which eventually will contact other people who may or may not be part of your community, to exchange information; and a random mobility pattern, which simulates a scenario divided into communities where people choose a destination at random, and based on the restriction map, move to this destination using the shortest path. The simulation results, obtained through The ONE simulator, show that in scenarios where the mobility model based on a community of people and also where the mobility model is random, the PSONET protocol achieves a higher messages delivery rate and a lower replication messages compared with the Epidemic and PROPHET protocols.
Resumo:
Natural language processing has achieved great success in a wide range of ap- plications, producing both commercial language services and open-source language tools. However, most methods take a static or batch approach, assuming that the model has all information it needs and makes a one-time prediction. In this disser- tation, we study dynamic problems where the input comes in a sequence instead of all at once, and the output must be produced while the input is arriving. In these problems, predictions are often made based only on partial information. We see this dynamic setting in many real-time, interactive applications. These problems usually involve a trade-off between the amount of input received (cost) and the quality of the output prediction (accuracy). Therefore, the evaluation considers both objectives (e.g., plotting a Pareto curve). Our goal is to develop a formal understanding of sequential prediction and decision-making problems in natural language processing and to propose efficient solutions. Toward this end, we present meta-algorithms that take an existent batch model and produce a dynamic model to handle sequential inputs and outputs. Webuild our framework upon theories of Markov Decision Process (MDP), which allows learning to trade off competing objectives in a principled way. The main machine learning techniques we use are from imitation learning and reinforcement learning, and we advance current techniques to tackle problems arising in our settings. We evaluate our algorithm on a variety of applications, including dependency parsing, machine translation, and question answering. We show that our approach achieves a better cost-accuracy trade-off than the batch approach and heuristic-based decision- making approaches. We first propose a general framework for cost-sensitive prediction, where dif- ferent parts of the input come at different costs. We formulate a decision-making process that selects pieces of the input sequentially, and the selection is adaptive to each instance. Our approach is evaluated on both standard classification tasks and a structured prediction task (dependency parsing). We show that it achieves similar prediction quality to methods that use all input, while inducing a much smaller cost. Next, we extend the framework to problems where the input is revealed incremen- tally in a fixed order. We study two applications: simultaneous machine translation and quiz bowl (incremental text classification). We discuss challenges in this set- ting and show that adding domain knowledge eases the decision-making problem. A central theme throughout the chapters is an MDP formulation of a challenging problem with sequential input/output and trade-off decisions, accompanied by a learning algorithm that solves the MDP.
Resumo:
Presentaciones de la asignatura Interfaces para Entornos Inteligentes del Máster en Tecnologías de la Informática/Machine Learning and Data Mining.
Resumo:
International audience
Resumo:
(Deep) neural networks are increasingly being used for various computer vision and pattern recognition tasks due to their strong ability to learn highly discriminative features. However, quantitative analysis of their classication ability and design philosophies are still nebulous. In this work, we use information theory to analyze the concatenated restricted Boltzmann machines (RBMs) and propose a mutual information-based RBM neural networks (MI-RBM). We develop a novel pretraining algorithm to maximize the mutual information between RBMs. Extensive experimental results on various classication tasks show the eectiveness of the proposed approach.
Resumo:
The brain is a network spanning multiple scales from subcellular to macroscopic. In this thesis I present four projects studying brain networks at different levels of abstraction. The first involves determining a functional connectivity network based on neural spike trains and using a graph theoretical method to cluster groups of neurons into putative cell assemblies. In the second project I model neural networks at a microscopic level. Using diferent clustered wiring schemes, I show that almost identical spatiotemporal activity patterns can be observed, demonstrating that there is a broad neuro-architectural basis to attain structured spatiotemporal dynamics. Remarkably, irrespective of the precise topological mechanism, this behavior can be predicted by examining the spectral properties of the synaptic weight matrix. The third project introduces, via two circuit architectures, a new paradigm for feedforward processing in which inhibitory neurons have the complex and pivotal role in governing information flow in cortical network models. Finally, I analyze axonal projections in sleep deprived mice using data collected as part of the Allen Institute's Mesoscopic Connectivity Atlas. After normalizing for experimental variability, the results indicate there is no single explanatory difference in the mesoscale network between control and sleep deprived mice. Using machine learning techniques, however, animal classification could be done at levels significantly above chance. This reveals that intricate changes in connectivity do occur due to chronic sleep deprivation.
Resumo:
Nous avons développé un jeu sérieux afin d’enseigner aux utilisateurs à dessiner des diagrammes de Lewis. Nous l’avons augmenté d’un environnement pouvant enregistrer des signaux électroencéphalographiques, les expressions faciales, et la pupille d’un utilisateur. Le but de ce travail est de vérifier si l’environnement peut permettre au jeu de s’adapter en temps réel à l’utilisateur grâce à une détection automatique du besoin d’aide de l’utilisateur ainsi que si l’utilisateur est davantage satisfait de son expérience avec l’adaptation. Les résultats démontrent que le système d’adaptation peut détecter le besoin d’aide grâce à deux modèles d’apprentissage machine entraînés différemment, l’un généralisé et l’autre personalisé, avec des performances respectives de 53.4% et 67.5% par rapport à un niveau de chance de 33.3%.
Resumo:
There is a growing societal need to address the increasing prevalence of behavioral health issues, such as obesity, alcohol or drug use, and general lack of treatment adherence for a variety of health problems. The statistics, worldwide and in the USA, are daunting. Excessive alcohol use is the third leading preventable cause of death in the United States (with 79,000 deaths annually), and is responsible for a wide range of health and social problems. On the positive side though, these behavioral health issues (and associated possible diseases) can often be prevented with relatively simple lifestyle changes, such as losing weight with a diet and/or physical exercise, or learning how to reduce alcohol consumption. Medicine has therefore started to move toward finding ways of preventively promoting wellness, rather than solely treating already established illness.^ Evidence-based patient-centered Brief Motivational Interviewing (BMI) interventions have been found particularly effective in helping people find intrinsic motivation to change problem behaviors after short counseling sessions, and to maintain healthy lifestyles over the long-term. Lack of locally available personnel well-trained in BMI, however, often limits access to successful interventions for people in need. To fill this accessibility gap, Computer-Based Interventions (CBIs) have started to emerge. Success of the CBIs, however, critically relies on insuring engagement and retention of CBI users so that they remain motivated to use these systems and come back to use them over the long term as necessary.^ Because of their text-only interfaces, current CBIs can therefore only express limited empathy and rapport, which are the most important factors of health interventions. Fortunately, in the last decade, computer science research has progressed in the design of simulated human characters with anthropomorphic communicative abilities. Virtual characters interact using humans’ innate communication modalities, such as facial expressions, body language, speech, and natural language understanding. By advancing research in Artificial Intelligence (AI), we can improve the ability of artificial agents to help us solve CBI problems.^ To facilitate successful communication and social interaction between artificial agents and human partners, it is essential that aspects of human social behavior, especially empathy and rapport, be considered when designing human-computer interfaces. Hence, the goal of the present dissertation is to provide a computational model of rapport to enhance an artificial agent’s social behavior, and to provide an experimental tool for the psychological theories shaping the model. Parts of this thesis were already published in [LYL+12, AYL12, AL13, ALYR13, LAYR13, YALR13, ALY14].^
Resumo:
Ensemble Stream Modeling and Data-cleaning are sensor information processing systems have different training and testing methods by which their goals are cross-validated. This research examines a mechanism, which seeks to extract novel patterns by generating ensembles from data. The main goal of label-less stream processing is to process the sensed events to eliminate the noises that are uncorrelated, and choose the most likely model without over fitting thus obtaining higher model confidence. Higher quality streams can be realized by combining many short streams into an ensemble which has the desired quality. The framework for the investigation is an existing data mining tool. First, to accommodate feature extraction such as a bush or natural forest-fire event we make an assumption of the burnt area (BA*), sensed ground truth as our target variable obtained from logs. Even though this is an obvious model choice the results are disappointing. The reasons for this are two: One, the histogram of fire activity is highly skewed. Two, the measured sensor parameters are highly correlated. Since using non descriptive features does not yield good results, we resort to temporal features. By doing so we carefully eliminate the averaging effects; the resulting histogram is more satisfactory and conceptual knowledge is learned from sensor streams. Second is the process of feature induction by cross-validating attributes with single or multi-target variables to minimize training error. We use F-measure score, which combines precision and accuracy to determine the false alarm rate of fire events. The multi-target data-cleaning trees use information purity of the target leaf-nodes to learn higher order features. A sensitive variance measure such as f-test is performed during each node’s split to select the best attribute. Ensemble stream model approach proved to improve when using complicated features with a simpler tree classifier. The ensemble framework for data-cleaning and the enhancements to quantify quality of fitness (30% spatial, 10% temporal, and 90% mobility reduction) of sensor led to the formation of streams for sensor-enabled applications. Which further motivates the novelty of stream quality labeling and its importance in solving vast amounts of real-time mobile streams generated today.
Resumo:
Nous avons développé un jeu sérieux afin d’enseigner aux utilisateurs à dessiner des diagrammes de Lewis. Nous l’avons augmenté d’un environnement pouvant enregistrer des signaux électroencéphalographiques, les expressions faciales, et la pupille d’un utilisateur. Le but de ce travail est de vérifier si l’environnement peut permettre au jeu de s’adapter en temps réel à l’utilisateur grâce à une détection automatique du besoin d’aide de l’utilisateur ainsi que si l’utilisateur est davantage satisfait de son expérience avec l’adaptation. Les résultats démontrent que le système d’adaptation peut détecter le besoin d’aide grâce à deux modèles d’apprentissage machine entraînés différemment, l’un généralisé et l’autre personalisé, avec des performances respectives de 53.4% et 67.5% par rapport à un niveau de chance de 33.3%.
Resumo:
Data sources are often dispersed geographically in real life applications. Finding a knowledge model may require to join all the data sources and to run a machine learning algorithm on the joint set. We present an alternative based on a Multi Agent System (MAS): an agent mines one data source in order to extract a local theory (knowledge model) and then merges it with the previous MAS theory using a knowledge fusion technique. This way, we obtain a global theory that summarizes the distributed knowledge without spending resources and time in joining data sources. New experiments have been executed including statistical significance analysis. The results show that, as a result of knowledge fusion, the accuracy of initial theories is significantly improved as well as the accuracy of the monolithic solution.
Resumo:
Big data are reshaping the way we interact with technology, thus fostering new applications to increase the safety-assessment of foods. An extraordinary amount of information is analysed using machine learning approaches aimed at detecting the existence or predicting the likelihood of future risks. Food business operators have to share the results of these analyses when applying to place on the market regulated products, whereas agri-food safety agencies (including the European Food Safety Authority) are exploring new avenues to increase the accuracy of their evaluations by processing Big data. Such an informational endowment brings with it opportunities and risks correlated to the extraction of meaningful inferences from data. However, conflicting interests and tensions among the involved entities - the industry, food safety agencies, and consumers - hinder the finding of shared methods to steer the processing of Big data in a sound, transparent and trustworthy way. A recent reform in the EU sectoral legislation, the lack of trust and the presence of a considerable number of stakeholders highlight the need of ethical contributions aimed at steering the development and the deployment of Big data applications. Moreover, Artificial Intelligence guidelines and charters published by European Union institutions and Member States have to be discussed in light of applied contexts, including the one at stake. This thesis aims to contribute to these goals by discussing what principles should be put forward when processing Big data in the context of agri-food safety-risk assessment. The research focuses on two interviewed topics - data ownership and data governance - by evaluating how the regulatory framework addresses the challenges raised by Big data analysis in these domains. The outcome of the project is a tentative Roadmap aimed to identify the principles to be observed when processing Big data in this domain and their possible implementations.