922 resultados para METHYL-METHACRYLATE
Resumo:
Polymethacrylate-based monolithic columns were prepared for capillary electrochromatography (CEC) by in situ copolymerization of butyl methacrylate (BMA), 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS), and ethylene dimethacrylate (EDMA) in the presence of a porogen in fused-silica capillaries of 100 mum I.D. The abnormal phenomenon that retention factors for neutral species decreases with applied voltage in CEC was observed. Capillary electrophoresis (CE) instruments usually require a period of time to increase voltage from 0 kV to desired value, which is called as ramp time. Such ramp time and any error in the determination of dead time should be taken into account during the accurate calculation of retention factors. After the correction of the retention factors, the plots of the corrected factors for alkylbenzene versus applied voltage were made, the absolute value of the plot slopes are less than 1.8 X 10(-4), Which indicates that the corrected retention times for neutral species do not show any dependence on applied voltage. Further, the plots of the corrected retention times for acidic and basic compounds versus the reciprocal of applied voltage were drawn, where the target compounds were eluted in neutral form. The very nice linearity of the plots was obtained. The linear correlation coefficients are over 0.999. Here, the slopes of the plots represent
Resumo:
In this paper, the method for the derivatization of carbohydrates with 1-phenyl-3-methyl-5-pyrazolone (PMP) was simplified. One-third of the derivatization time was saved. Five monosaccharide derivatives have been well separated by MEKC and HPLC under optimized conditions. Good reproducibility could be obtained with relative standard deviation (RSD) values of the migration times within 5.0 and 2.3%, respectively. Furthermore, the developed methods have been successfully applied to the analysis of carbohydrates in Aloe powder and food. These methods are quite useful for routine analysis of monosaccharides and oligosaccharides in real samples. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The mass resolved multiphoton ionization (MPI) spectra of methyl iodide were obtained in the 430-490 nm region using a time-of-flight (TOF) mass spectrometer. They have the same vibrational structure, which testifies that the fragment species, in the wavelength region under study, are from the photodissociation of multiphoton ionized molecular parent ions. Some features in the spectra are identified as three-photon excitations to 6p and 7s Rydberg states of methyl iodide. Two new vibrational structures of some Rydberg states are observed. The mechanism of ionization and dissociation is also discussed. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Selective extraction of Mercury(II) using 1-naphthylthiourea-methyl isobutyl ketone (ANTU-MIBK) system from hydrochloric acid solutions (0.1-10 M) has been studied. Influence of foreign ions, acid and ligand concentrations has been investigated. Addition of ANTU in MIBK enhanced, extraction capacity of MIBK to several times. Low effect of foreign ions and high separation factors for a number of metal ions determined at 0.5 M hydrochloric acid concentration evaluated the proposed method efficient and selective. The experimental data obtained from application of the method for extraction of mercury from a synthetic aqueous solution reveal that more than 99% mercury can be separated from cadmium, zinc and selenium in a single step with five minutes equilibration
Resumo:
A diblcok copolymer monomethoxy poly (ethylene glycol)-block-poly(L-lactide-co-2-methyl-2-carboxyl-propylene carbonate) (MPEG-b-P(LA-co-MCC)) was obtained by copolymerization of L-lactide (LA) and 2-methyl-2-benzoxycarbonyl-propylene carbonate (MBC) and subsequent catalytic hydrogenation. The pendant carboxyl groups of the copolymer MPEG-b-P(LA-co-MCC) were conjugated with antitumor drug docetaxel and tripeptide arginine-glycine-aspartic acid (RGD), respectively.
Resumo:
The extraction of rare earth elements from chloride medium by mixtures of sec-nonylphenoxy acetic acid (CA100) with bis(2,4,4-trimethylpentyl) dithiophosphinic acid (Cyanex301) or bis(2,4,4-trimethylpentyl) monothiophosphinic acid (Cyanex302) in n-heptane has been studied. The synergistic enhancement of the extraction of lanthanum (III) by mixtures of CA100 with Cyanex301 has been investigated using the methods of slope analysis and constant mole. The extracted complex of lanthanum (III) is determined. The logarithm of the equilibrium constant is calculated as - 1.41. The formation constants and the thermodynamic functions, Delta H, Delta G, and Delta S have also been determined.
Resumo:
Linear low density polyethylene (LLDPE) was functionalized with 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) by using -ray pre-irradiation in air in a twin-screw extruder. Fourier-transformed infrared spectroscopy (FT-IR) and electron spectroscopy for chemical analysis (ESCA) were used to characterize the formation of LLDPE-g-AMPS copolymers. The content of AMPS in LLDPE-g-AMPS was determined by using element analysis instrument. The effects of concentrations of monomer, reaction temperature and pre-irradiation dose on degree of grafting were investigated. The critical surface tension of LLDPE-g-AMPS was measured by using contact angle method. The influences of the degree of grafting on crystallization properties were studied by using DSC. Compared with neat LLDPE, the crystallization temperature increased about 4C, and crystallinity decreased with increasing degree of grafting. Crystallization rates of grafted LLDPE were faster than that of plain LLDPE at the same crystallization temperature.
Resumo:
Poly(ethylene oxide)-b-poly(2-hydroxyethyl methacrylate) (PEO-b-PHEMA) was synthesized by successive atom transfer radical polymerization (ATRP) of 2-hydroxyethyl methacrylate(HEMA) monomer using PEO-Br macroinitiator as initiator, CuBr/CuBr2 and 2,2.-bipyridyl (bpy) as catalyst and ligand. IR, H-1 NMR, and GPC analysis indicate that PEO-b-PHEMA block copolymer with low polydispersity index (M-w/M-n approximate to 1.1) has been formed. Self-assembly of this double hydrophilic block copolymer in the selective solvent and water was also studied. Owing to the high hydrophilic nature of the PEO and PHEMA blocks, this double hydrophilic block copolymer cannot disperse well in water. So block copolymer was modified by part esterification of PEO-b-PHEMA with acetic anhydride, which increased the hydrophobic group of the PHEMA block. The TEM results show that this block copolymer spontaneously form well-defined micelles in water.
Resumo:
We prepared four new ionic liquids consisting of N-methyl-N-allylpyrrolidinium cation in conjunction with anions including iodide, nitrate, thiocyanate, and dicyanamide, respectively, and measured their physical properties of density, viscosity, and conductivity. Owing to the relatively lower melting point of electroactive N-methyl-N-allylpyrrolidinium iodide, in combination with three other nonelectroactive ionic liquids, we could construct solvent-free electrolytes possessing high iodide concentrations for dye-sensitized solar cells. We correlated temperature-dependent electrolyte viscosity with molar conductivity and triiodide mobility through applying an empirical Walden's rule and a modified Stokes-Einstein equation, respectively. We have further found that these anions (nitrate, thiocyanate, and dicyanamide) have different influences on surface states and electron transport in the mesoporous titania film, resulting in different photovoltages and photocurrents of dye-sensitized solar cells.
Resumo:
The non-covalent complexes between three flavonoid glycosides (quercitrin, hyperoside and rutin) and heptakis(2,6-di-O-methyl)-beta-cyclodextrin (DM-beta-CD) were investigated by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS). The 1:1 complexation of each flavonoid glycoside (guest) to the DM-beta-CD (host) was monitored in the negative ion mode by mixing each guest with an up to 30-fold molar excess of the host. The binding constants for all complexes were calculated by a linear equation in the order: DM-beta-CD:quercitrin > DM-beta-CD:rutin > DM-beta-CD:hyperoside. A binding model for the complexes has also been proposed based on the binding constants and tandem mass spectrometric data of these complexes.
Resumo:
The morphological development and crystallization behavior of poly(epsilon-caprolactone) (PCL) in miscible mixtures of PCL and poly(vinyl methyl ether) (PVME) were investigated by optical microscopy as a function of the mixture composition and crystallization temperature. The results indicated that the degree of crystallinity of PCL was independent of the mixture composition upon melt crystallization because the glass-transition temperatures of the mixtures were much lower than the crystallization temperature of PCL. The radii of the PCL spherulites increased linearly with time at crystallization temperatures ranging from 42 to 49 degrees C. The isothermal growth rates of PCL spherulites decreased with the amount of the amorphous PVME components in the mixtures. Accounting for the miscibility of PCL/PVME mixtures, the radial growth rates of PCL spherulites were well described by a kinetic equation involving the Flory-Huggins interaction parameter and the free energy for the nuclei formation in such a way that the theoretical calculations were in good agreement with the experimental data. From the analysis of the equilibrium melting point depression, the interaction energy density of the PVME/PCL system was calculated to be -3.95 J/cm(3).
Resumo:
The crystallization behaviors of poly( E-caprolactone) (PCL) in poly(epsilon-caprolactone) (PCL) and poly(vinyl methyl ether) (PVME) blends were investigated by POM, DSC, WAXD, SAXS. POM results indicated that spherical crystal morphology was present during isothermal process, and the spheric growth rates were reduced with increasing the contents of PVME in PCL/PVME blends. It was found that the crystallinity of PCL in the blends remained almost constant regardless of the blend composition, but it was dependent on preparation technique. Solution-crystallization was found to be a technique capable of increasing crystallinity levels for some compositions. The melting behavior of the blends is a rather complex process. Both solution-crystallized samples and isothermal-crystallized samples exhibited a single endotherm. Oppositely, melting-crystallized samples exhibited dual-melting endotherms whose mangnitudes vary with blend compositions. On the basis of WAXD and SAXS experiments, it is found that the crystal structure is unchanged, but the long period increases with increasing the content of PVME because of the thickening of the amorphous layers.