927 resultados para Leukocyte extract
Resumo:
Signal Processing (SP) is a subject of central importance in engineering and the applied sciences. Signals are information-bearing functions, and SP deals with the analysis and processing of signals (by dedicated systems) to extract or modify information. Signal processing is necessary because signals normally contain information that is not readily usable or understandable, or which might be disturbed by unwanted sources such as noise. Although many signals are non-electrical, it is common to convert them into electrical signals for processing. Most natural signals (such as acoustic and biomedical signals) are continuous functions of time, with these signals being referred to as analog signals. Prior to the onset of digital computers, Analog Signal Processing (ASP) and analog systems were the only tool to deal with analog signals. Although ASP and analog systems are still widely used, Digital Signal Processing (DSP) and digital systems are attracting more attention, due in large part to the significant advantages of digital systems over the analog counterparts. These advantages include superiority in performance,s peed, reliability, efficiency of storage, size and cost. In addition, DSP can solve problems that cannot be solved using ASP, like the spectral analysis of multicomonent signals, adaptive filtering, and operations at very low frequencies. Following the recent developments in engineering which occurred in the 1980's and 1990's, DSP became one of the world's fastest growing industries. Since that time DSP has not only impacted on traditional areas of electrical engineering, but has had far reaching effects on other domains that deal with information such as economics, meteorology, seismology, bioengineering, oceanology, communications, astronomy, radar engineering, control engineering and various other applications. This book is based on the Lecture Notes of Associate Professor Zahir M. Hussain at RMIT University (Melbourne, 2001-2009), the research of Dr. Amin Z. Sadik (at QUT & RMIT, 2005-2008), and the Note of Professor Peter O'Shea at Queensland University of Technology. Part I of the book addresses the representation of analog and digital signals and systems in the time domain and in the frequency domain. The core topics covered are convolution, transforms (Fourier, Laplace, Z. Discrete-time Fourier, and Discrete Fourier), filters, and random signal analysis. There is also a treatment of some important applications of DSP, including signal detection in noise, radar range estimation, banking and financial applications, and audio effects production. Design and implementation of digital systems (such as integrators, differentiators, resonators and oscillators are also considered, along with the design of conventional digital filters. Part I is suitable for an elementary course in DSP. Part II (which is suitable for an advanced signal processing course), considers selected signal processing systems and techniques. Core topics covered are the Hilbert transformer, binary signal transmission, phase-locked loops, sigma-delta modulation, noise shaping, quantization, adaptive filters, and non-stationary signal analysis. Part III presents some selected advanced DSP topics. We hope that this book will contribute to the advancement of engineering education and that it will serve as a general reference book on digital signal processing.
Resumo:
Facial expression is an important channel for human communication and can be applied in many real applications. One critical step for facial expression recognition (FER) is to accurately extract emotional features. Current approaches on FER in static images have not fully considered and utilized the features of facial element and muscle movements, which represent static and dynamic, as well as geometric and appearance characteristics of facial expressions. This paper proposes an approach to solve this limitation using ‘salient’ distance features, which are obtained by extracting patch-based 3D Gabor features, selecting the ‘salient’ patches, and performing patch matching operations. The experimental results demonstrate high correct recognition rate (CRR), significant performance improvements due to the consideration of facial element and muscle movements, promising results under face registration errors, and fast processing time. The comparison with the state-of-the-art performance confirms that the proposed approach achieves the highest CRR on the JAFFE database and is among the top performers on the Cohn-Kanade (CK) database.
Resumo:
Robust, affine covariant, feature extractors provide a means to extract correspondences between images captured by widely separated cameras. Advances in wide baseline correspondence extraction require looking beyond the robust feature extraction and matching approach. This study examines new techniques of extracting correspondences that take advantage of information contained in affine feature matches. Methods of improving the accuracy of a set of putative matches, eliminating incorrect matches and extracting large numbers of additional correspondences are explored. It is assumed that knowledge of the camera geometry is not available and not immediately recoverable. The new techniques are evaluated by means of an epipolar geometry estimation task. It is shown that these methods enable the computation of camera geometry in many cases where existing feature extractors cannot produce sufficient numbers of accurate correspondences.
Resumo:
Most web service discovery systems use keyword-based search algorithms and, although partially successful, sometimes fail to satisfy some users information needs. This has given rise to several semantics-based approaches that look to go beyond simple attribute matching and try to capture the semantics of services. However, the results reported in the literature vary and in many cases are worse than the results obtained by keyword-based systems. We believe the accuracy of the mechanisms used to extract tokens from the non-natural language sections of WSDL files directly affects the performance of these techniques, because some of them can be more sensitive to noise. In this paper three existing tokenization algorithms are evaluated and a new algorithm that outperforms all the algorithms found in the literature is introduced.
Resumo:
Car Following models have a critical role in all microscopic traffic simulation models. Current microscopic simulation models are unable to mimic the unsafe behaviour of drivers as most are based on presumptions about the safe behaviour of drivers. Gipps model is a widely used car following model embedded in different micro-simulation models. This paper examines the Gipps car following model to investigate ways of improving the model for safety studies application. The paper puts forward some suggestions to modify the Gipps model to improve its capabilities to simulate unsafe vehicle movements (vehicles with safety indicators below critical thresholds). The result of the paper is one step forward to facilitate assessing and predicting safety at motorways using microscopic simulation. NGSIM as a rich source of vehicle trajectory data for a motorway is used to extract its relatively risky events. Short following headways and Time To Collision are used to assess critical safety event within traffic flow. The result shows that the modified proposed car following to a certain extent predicts the unsafe trajectories with smaller error values than the generic Gipps model.
Resumo:
We compared changes in markers of muscle damage and systemic inflammation after submaximal and maximal lengthening muscle contractions of the elbow flexors. Using a cross-over design, 10 healthy young men not involved in resistance training completed a submaximal trial (10 sets of 60 lengthening contractions at 10% maximum isometric strength, 1 min rest between sets), followed by a maximal trial (10 sets of three lengthening contractions at 100% maximum isometric strength, 3 min rest between sets). Lengthening contractions were performed on an isokinetic dynamometer. Opposite arms were used for the submaximal and maximal trials, and the trials were separated by a minimum of two weeks. Blood was sampled before, immediately after, 1 h, 3 h, and 1-4 d after each trial. Total leukocyte and neutrophil numbers, and the serum concentration of soluble tumor necrosis factor-alpha receptor 1 were elevated after both trials (P < 0.01), but there were no differences between the trials. Serum IL-6 concentration was elevated 3 h after the submaximal contractions (P < 0.01). The concentrations of serum tumor necrosis factor-alpha, IL-1 receptor antagonist, IL-10, granulocyte-colony stimulating factor and plasma C-reactive protein remained unchanged following both trials. Maximum isometric strength and range of motion decreased significantly (P < 0.001) after both trials, and were lower from 1-4 days after the maximal contractions compared to the submaximal contractions. Plasma myoglobin concentration and creatine kinase activity, muscle soreness and upper arm circumference all increased after both trials (P < 0.01), but were not significantly different between the trials. Therefore, there were no differences in markers of systemic inflammation, despite evidence of greater muscle damage following maximal versus submaximal lengthening contractions of the elbow flexors.
Resumo:
This study examines whether, in the presentation of financial information, digital formats address the concern over users’ functional fixation. The accounting literature indicates that the presentation of financial information either within the financial statements or in the notes to the financial statements often creates functional fixation where users of financial statements fail to adjust for differences in accounting policy. This leads users to judge what would otherwise be identical financial situations as being different due to the different accounting policies and methods adopted. It has been suggested that the use of digital formats in presenting financial reports may overcome functional fixation. Using an experimental design involving accountants in public practice, the results indicate that the use of digital formats to present financial reports does not fully overcome the issue of functional fixation in the processing of financial information. Although the participants were able to identify and extract relevant information, irrespective of whether or not the information was presented within the financial statements or in the notes to the accounts, the evidence indicates that functional fixation remained when the participants made final decisions based on available information. This suggests that functional fixation may not be caused by access to or extraction of information but by the level of perceived significance based on where the information is reported in the financial statements. In general, the results indicate that current technology may not be able to fully reduce functional fixation in the evaluation of financial information prepared in accordance with different accounting policies and methods.
Resumo:
The phase of an analytic signal constructed from the autocorrelation function of a signal contains significant information about the shape of the signal. Using Bedrosian's (1963) theorem for the Hilbert transform it is proved that this phase is robust to multiplicative noise if the signal is baseband and the spectra of the signal and the noise do not overlap. Higher-order spectral features are interpreted in this context and shown to extract nonlinear phase information while retaining robustness. The significance of the result is that prior knowledge of the spectra is not required.
Resumo:
Search log data is multi dimensional data consisting of number of searches of multiple users with many searched parameters. This data can be used to identify a user’s interest in an item or object being searched. Identifying highest interests of a Web user from his search log data is a complex process. Based on a user’s previous searches, most recommendation methods employ two-dimensional models to find relevant items. Such items are then recommended to a user. Two-dimensional data models, when used to mine knowledge from such multi dimensional data may not be able to give good mappings of user and his searches. The major problem with such models is that they are unable to find the latent relationships that exist between different searched dimensions. In this research work, we utilize tensors to model the various searches made by a user. Such high dimensional data model is then used to extract the relationship between various dimensions, and find the prominent searched components. To achieve this, we have used popular tensor decomposition methods like PARAFAC, Tucker and HOSVD. All experiments and evaluation is done on real datasets, which clearly show the effectiveness of tensor models in finding prominent searched components in comparison to other widely used two-dimensional data models. Such top rated searched components are then given as recommendation to users.
Resumo:
Process mining techniques are able to extract knowledge from event logs commonly available in today’s information systems. These techniques provide new means to discover, monitor, and improve processes in a variety of application domains. There are two main drivers for the growing interest in process mining. On the one hand, more and more events are being recorded, thus, providing detailed information about the history of processes. On the other hand, there is a need to improve and support business processes in competitive and rapidly changing environments. This manifesto is created by the IEEE Task Force on Process Mining and aims to promote the topic of process mining. Moreover, by defining a set of guiding principles and listing important challenges, this manifesto hopes to serve as a guide for software developers, scientists, consultants, business managers, and end-users. The goal is to increase the maturity of process mining as a new tool to improve the (re)design, control, and support of operational business processes.
Resumo:
A better understanding of the behaviour of prepared cane and bagasse, especially the ability to model the mechanical behaviour of bagasse as it is squeezed in a milling unit to extract juice, would help identify how to improve the current milling process; for example to reduce final bagasse moisture. Previous investigations have proven with certainty that juice flow through bagasse obeys Darcy’s permeability law, that the grip of the rough surface of the grooves on the bagasse can be represented by the Mohr- Coulomb failure criterion for soils, and that the internal mechanical behaviour of the bagasse can be represented by critical state behaviour similar to that of sand and clay. Current Finite Element Models (FEM) available in commercial software have adequate permeability models. However, commercial software does not contain an adequate mechanical model for bagasse. Progress has been made in the last ten years towards implementing a mechanical model for bagasse in finite element software code. This paper builds on that progress and carries out a further step towards obtaining an adequate material model. In particular, the prediction of volume change during shearing of normally consolidated final bagasse is addressed.
Resumo:
This paper closely examines factors affecting students’ progression in their engineering programs through fieldwork conducted at three Australian universities. To extract clues on how specific teaching methods can be used to maximize learning, the investigation considered factors such as understanding how students take in, process and present information. A number of focus groups were conducted with students and the data gathered was combined with survey results of students’ and academics’ learning styles. The paper reports on the process followed, and provides some analysis of the gathered data, as part of an Australian Learning and Teaching Council, ALTC, Associate Fellowship program.
Resumo:
This paper illustrates the damage identification and condition assessment of a three story bookshelf structure using a new frequency response functions (FRFs) based damage index and Artificial Neural Networks (ANNs). A major obstacle of using measured frequency response function data is a large size input variables to ANNs. This problem is overcome by applying a data reduction technique called principal component analysis (PCA). In the proposed procedure, ANNs with their powerful pattern recognition and classification ability were used to extract damage information such as damage locations and severities from measured FRFs. Therefore, simple neural network models are developed, trained by Back Propagation (BP), to associate the FRFs with the damage or undamaged locations and severity of the damage of the structure. Finally, the effectiveness of the proposed method is illustrated and validated by using the real data provided by the Los Alamos National Laboratory, USA. The illustrated results show that the PCA based artificial Neural Network method is suitable and effective for damage identification and condition assessment of building structures. In addition, it is clearly demonstrated that the accuracy of proposed damage detection method can also be improved by increasing number of baseline datasets and number of principal components of the baseline dataset.
Resumo:
Accurate and detailed road models play an important role in a number of geospatial applications, such as infrastructure planning, traffic monitoring, and driver assistance systems. In this thesis, an integrated approach for the automatic extraction of precise road features from high resolution aerial images and LiDAR point clouds is presented. A framework of road information modeling has been proposed, for rural and urban scenarios respectively, and an integrated system has been developed to deal with road feature extraction using image and LiDAR analysis. For road extraction in rural regions, a hierarchical image analysis is first performed to maximize the exploitation of road characteristics in different resolutions. The rough locations and directions of roads are provided by the road centerlines detected in low resolution images, both of which can be further employed to facilitate the road information generation in high resolution images. The histogram thresholding method is then chosen to classify road details in high resolution images, where color space transformation is used for data preparation. After the road surface detection, anisotropic Gaussian and Gabor filters are employed to enhance road pavement markings while constraining other ground objects, such as vegetation and houses. Afterwards, pavement markings are obtained from the filtered image using the Otsu's clustering method. The final road model is generated by superimposing the lane markings on the road surfaces, where the digital terrain model (DTM) produced by LiDAR data can also be combined to obtain the 3D road model. As the extraction of roads in urban areas is greatly affected by buildings, shadows, vehicles, and parking lots, we combine high resolution aerial images and dense LiDAR data to fully exploit the precise spectral and horizontal spatial resolution of aerial images and the accurate vertical information provided by airborne LiDAR. Objectoriented image analysis methods are employed to process the feature classiffcation and road detection in aerial images. In this process, we first utilize an adaptive mean shift (MS) segmentation algorithm to segment the original images into meaningful object-oriented clusters. Then the support vector machine (SVM) algorithm is further applied on the MS segmented image to extract road objects. Road surface detected in LiDAR intensity images is taken as a mask to remove the effects of shadows and trees. In addition, normalized DSM (nDSM) obtained from LiDAR is employed to filter out other above-ground objects, such as buildings and vehicles. The proposed road extraction approaches are tested using rural and urban datasets respectively. The rural road extraction method is performed using pan-sharpened aerial images of the Bruce Highway, Gympie, Queensland. The road extraction algorithm for urban regions is tested using the datasets of Bundaberg, which combine aerial imagery and LiDAR data. Quantitative evaluation of the extracted road information for both datasets has been carried out. The experiments and the evaluation results using Gympie datasets show that more than 96% of the road surfaces and over 90% of the lane markings are accurately reconstructed, and the false alarm rates for road surfaces and lane markings are below 3% and 2% respectively. For the urban test sites of Bundaberg, more than 93% of the road surface is correctly reconstructed, and the mis-detection rate is below 10%.