940 resultados para Lagrangian particle tracking method


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nature of the molecular structure of plastics makes the properties of such materials markedly temperature dependent. In addition, the continuous increase in the utilization of polymeric materials in many specific applications has demanded knowledge of their physical properties, both during their processing as raw material, as well as over the working temperature range of the final polymer product. Thermal conductivity, thermal diffusivity and specific heat, namely the thermal properties, are the three most important physical properties of a material that are needed for heat transfer calculations. Recently, among several different methods for the determination of the thermal diffusivity and thermal conductivity, transient techniques have become the preferable way for measuring thermal properties of materials. In this work, a very simple and low cost variation of the well known Angstrom method is employed in the experimental determination of the thermal diffusivity of some selected polymers. Cylindrical shaped samples 3 cm diameter and 7 cm high were prepared by cutting from long cylindrical commercial bars. The reproducibility is very good, and the results obtained were checked against results obtained by the hot wire technique, laser flash technique, and when possible, they were also compared with data found in the literature. Thermal conductivity may be then derived from the thermal diffusivity with the knowledge of the bulk density and the specific heat, easily obtained by differential scanning calorimetry. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents an extensive investigation carried out in two technology-based companies of the So Carlos technological pole in Brazil. Based on this multiple case study and literature review, a method, entitled hereafter IVPM2, applying agile project management (APM) principles was developed. After the method implementation, a qualitative evaluation was carried out by a document analysis and questionnaire application. This article shows that the application of this method at the companies under investigation evidenced the benefits of using simple, iterative, visual, and agile techniques to plan and control innovative product projects combined with traditional project management best practices, such as standardization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the method of Galerkin and the Askey-Wiener scheme are used to obtain approximate solutions to the stochastic displacement response of Kirchhoff plates with uncertain parameters. Theoretical and numerical results are presented. The Lax-Milgram lemma is used to express the conditions for existence and uniqueness of the solution. Uncertainties in plate and foundation stiffness are modeled by respecting these conditions, hence using Legendre polynomials indexed in uniform random variables. The space of approximate solutions is built using results of density between the space of continuous functions and Sobolev spaces. Approximate Galerkin solutions are compared with results of Monte Carlo simulation, in terms of first and second order moments and in terms of histograms of the displacement response. Numerical results for two example problems show very fast convergence to the exact solution, at excellent accuracies. The Askey-Wiener Galerkin scheme developed herein is able to reproduce the histogram of the displacement response. The scheme is shown to be a theoretically sound and efficient method for the solution of stochastic problems in engineering. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a physical non-linear formulation to deal with steel fiber reinforced concrete by the finite element method. The proposed formulation allows the consideration of short or long fibers placed arbitrarily inside a continuum domain (matrix). The most important feature of the formulation is that no additional degree of freedom is introduced in the pre-existent finite element numerical system to consider any distribution or quantity of fiber inclusions. In other words, the size of the system of equations used to solve a non-reinforced medium is the same as the one used to solve the reinforced counterpart. Another important characteristic of the formulation is the reduced work required by the user to introduce reinforcements, avoiding ""rebar"" elements, node by node geometrical definitions or even complex mesh generation. Bounded connection between long fibers and continuum is considered, for short fibers a simplified approach is proposed to consider splitting. Non-associative plasticity is adopted for the continuum and one dimensional plasticity is adopted to model fibers. Examples are presented in order to show the capabilities of the formulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inverse analysis is currently an important subject of study in several fields of science and engineering. The identification of physical and geometric parameters using experimental measurements is required in many applications. In this work a boundary element formulation to identify boundary and interface values as well as material properties is proposed. In particular the proposed formulation is dedicated to identifying material parameters when a cohesive crack model is assumed for 2D problems. A computer code is developed and implemented using the BEM multi-region technique and regularisation methods to perform the inverse analysis. Several examples are shown to demonstrate the efficiency of the proposed model. (C) 2010 Elsevier Ltd. All rights reserved,

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a new boundary element formulation for the analysis of plate-beam interaction is presented. This formulation uses a three nodal value boundary elements and each beam element is replaced by its actions on the plate, i.e., a distributed load and end of element forces. From the solution of the differential equation of a beam with linearly distributed load the plate-beam interaction tractions can be written as a function of the nodal values of the beam. With this transformation a final system of equation in the nodal values of displacements of plate boundary and beam nodes is obtained and from it, all unknowns of the plate-beam system are obtained. Many examples are analyzed and the results show an excellent agreement with those from the analytical solution and other numerical methods. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Generalized Finite Element Method (GFEM) is employed in this paper for the numerical analysis of three-dimensional solids tinder nonlinear behavior. A brief summary of the GFEM as well as a description of the formulation of the hexahedral element based oil the proposed enrichment strategy are initially presented. Next, in order to introduce the nonlinear analysis of solids, two constitutive models are briefly reviewed: Lemaitre`s model, in which damage and plasticity are coupled, and Mazars`s damage model suitable for concrete tinder increased loading. Both models are employed in the framework of a nonlocal approach to ensure solution objectivity. In the numerical analyses carried out, a selective enrichment of approximation at regions of concern in the domain (mainly those with high strain and damage gradients) is exploited. Such a possibility makes the three-dimensional analysis less expensive and practicable since re-meshing resources, characteristic of h-adaptivity, can be minimized. Moreover, a combination of three-dimensional analysis and the selective enrichment presents a valuable good tool for a better description of both damage and plastic strain scatterings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a formulation for representation of stiffeners in plane stress by the boundary elements method (BEM) in linear analysis is presented. The strategy is to adopt approximations for the displacements in the central line of the stiffener. With this simplification the Spurious oscillations in the stress along stiffeners with small thickness is prevented. Worked examples are analyzed to show the efficiency of these techniques, especially in the insertion of very narrow sub-regions, in which quasi-singular integrals are calculated, with stiffeners that are much stiffer than the main domain. The results obtained with this formulation are very close to those obtained with other formulations. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a domain boundary element formulation for inelastic saturated porous media with rate-independent behavior for the solid skeleton. The formulation is then applied to elastic-plastic behavior for the solid. Biot`s consolidation theory, extended to include irreversible phenomena is considered and the direct boundary element technique is used for the numerical solution after time discretization by the implicit Euler backward algorithm. The associated nonlinear algebraic problem is solved by the Newton-Raphson procedure whereby the loading/unloading conditions are fully taken into account and the consistent tangent operator defined. Only domain nodes (nodes defined inside the domain) are used to represent all domain values and the corresponding integrals are computed by using an accurate sub-elementation scheme. The developments are illustrated through the Drucker-Prager elastic-plastic model for the solid skeleton and various examples are analyzed with the proposed algorithms. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A way of coupling digital image correlation (to measure displacement fields) and boundary element method (to compute displacements and tractions along a crack surface) is presented herein. It allows for the identification of Young`s modulus and fracture parameters associated with a cohesive model. This procedure is illustrated to analyze the latter for an ordinary concrete in a three-point bend test on a notched beam. In view of measurement uncertainties, the results are deemed trustworthy thanks to the fact that numerous measurement points are accessible and used as entries to the identification procedure. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The measurement of the charge distribution in laboratory generated aerosols particles was carried out. Four cases of electrostatic charge acquisition by aerosol particles were evaluated. In two of these cases. the charges acquired by the particles were naturally derived from the aerosol generation procedure itself, without using any additional charging method. Ill the other two cases, a corona charger and an impact charger were utilized as Supplementary methods for charge generation. Two types of aerosol generators were used in the dispersion of particles in the gas Stream: the vibrating orifice generator TSI model 3450 and the rotating plate generator TSI model 3433. In the vibrating orifice generator. a Solution of methylene blue Was used and the generated particles were mono-dispersed. Different mono-aerosols were generated with particle diameters varying from 6.0 x 10(-6) m to 1.4 x 10(-5) m. In the rotating plate generator, a poly-dispersed phosphate rock concentrate with Stokes mean diameter of 1.30 x 10(-6) m and size range between 1.5 x 10(-7) m and 8.0 x 10(-6) m Was utilized as powder material in all tests. In the tests performed with the mono-dispersed particles. the median charges of the particles varied between -3.0 x 10-(16) C and -5.0 x 10(-18) degrees C and a weak dependence between particle size and charge was observed. The particles were predominantly negatively charged. In the tests with the poly-dispersed particles the median charges varied fairly linearly with the particle diameter and were negative. The order of magnitude of the results obtained is in accordance with data reported in the literature. The charge distribution, in this case, was wider, so that an appreciable amount of particles were positively charged. The relative spread of the distribution varied with the charging method. It was also noticed that the corona charger acted very effectively in charging the particles. (C) 2008 Elsevier BY. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluid dynamic analysis is an important branch of several chemical engineering related areas, such as drying processes and chemical reactors. However, aspects concerning fluid dynamics in wastewater treatment bioreactors still require further investigation, as they highly influence process efficiency. Therefore, it is essential to evaluate the influence of biofilm on the reactor fluid dynamic behavior, through the analysis of a few important parameters, such as minimum fluidization velocity, bed expansion and porosity, and particle terminal velocity. The main objective of the present work was to investigate the fluid dynamics of an anaerobic fluidized bed reactor, having activated carbon particles as support media for biomass immobilization. Reactor performance was tested using synthetic residual water, which was prepared using the solution employed in BOD determination. The results showed that the presence of immobilized biomass increased particle density and altered the main fluid dynamic parameters investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multifunctional structures are pointed out as an important technology for the design of aircraft with volume, mass, and energy source limitations such as unmanned air vehicles (UAVs) and micro air vehicles (MAVs). In addition to its primary function of bearing aerodynamic loads, the wing/spar structure of an UAV or a MAV with embedded piezoceramics can provide an extra electrical energy source based on the concept of vibration energy harvesting to power small and wireless electronic components. Aeroelastic vibrations of a lifting surface can be converted into electricity using piezoelectric transduction. In this paper, frequency-domain piezoaeroelastic modeling and analysis of a canti-levered platelike wing with embedded piezoceramics is presented for energy harvesting. The electromechanical finite-element plate model is based on the thin-plate (Kirchhoff) assumptions while the unsteady aerodynamic model uses the doublet-lattice method. The electromechanical and aerodynamic models are combined to obtain the piezoaeroelastic equations, which are solved using a p-k scheme that accounts for the electromechanical coupling. The evolution of the aerodynamic damping and the frequency of each mode are obtained with changing airflow speed for a given electrical circuit. Expressions for piezoaeroelastically coupled frequency response functions (voltage, current, and electrical power as well the vibratory motion) are also defined by combining flow excitation with harmonic base excitation. Hence, piezoaeroelastic evolution can be investigated in frequency domain for different airflow speeds and electrical boundary conditions. [DOI:10.1115/1.4002785]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents results on a verification test of a Direct Numerical Simulation code of mixed high-order of accuracy using the method of manufactured solutions (MMS). This test is based on the formulation of an analytical solution for the Navier-Stokes equations modified by the addition of a source term. The present numerical code was aimed at simulating the temporal evolution of instability waves in a plane Poiseuille flow. The governing equations were solved in a vorticity-velocity formulation for a two-dimensional incompressible flow. The code employed two different numerical schemes. One used mixed high-order compact and non-compact finite-differences from fourth-order to sixth-order of accuracy. The other scheme used spectral methods instead of finite-difference methods for the streamwise direction, which was periodic. In the present test, particular attention was paid to the boundary conditions of the physical problem of interest. Indeed, the verification procedure using MMS can be more demanding than the often used comparison with Linear Stability Theory. That is particularly because in the latter test no attention is paid to the nonlinear terms. For the present verification test, it was possible to manufacture an analytical solution that reproduced some aspects of an instability wave in a nonlinear stage. Although the results of the verification by MMS for this mixed-order numerical scheme had to be interpreted with care, the test was very useful as it gave confidence that the code was free of programming errors. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents an analysis of the wavelet-Galerkin method for one-dimensional elastoplastic-damage problems. Time-stepping algorithm for non-linear dynamics is presented. Numerical treatment of the constitutive models is developed by the use of return-mapping algorithm. For spacial discretization we can use wavelet-Galerkin method instead of standard finite element method. This approach allows to locate singularities. The discrete formulation developed can be applied to the simulation of one-dimensional problems for elastic-plastic-damage models. (C) 2007 Elsevier Inc. All rights reserved.