997 resultados para Lady Franklin Bay Expedition (1881-1884)
Resumo:
A laboratory study of the rheology of mudflows in Hangzhou Bay, China, is reported in this paper. Both the steady and oscillatory (dynamic) rheological properties are studied using RMS-605 rheometer. A Dual-Bingham model is proposed for analyzing flow curves and compared with Worrall-Tuliani model. It is found that Dual-Bingham plastic rheological model is easier to implement than Worrall-Tuliani model and can provide satisfactory representations of the steady mudflows in Hangzhou Bay and other published data. The dependence of the yield stress and viscosity on sediment concentration is discussed based on the data from Hangzhou Bay mud and other published data. For the dynamic rheological properties of Hangzhou Bay mud, empirical expressions for elastic modulus and dynamic viscosity are provided in the form of exponential functions of sediment volume concentration, and comparisons with other published data also discussed.
Resumo:
To investigate temporal changes of water quality, a role of dinoflagellate cysts preserved in surface sediments was examined in Yokohama Port in Tokyo Bay, Japan. Two cores were collected, and sedimentation rates and ages of both were dated as approximately 1900 years or slightly older on the basis of 210Pb and 137Cs concentrations. The temporal change in dinoflagellate cyst assemblages in the two cores reflects eutrophication in Yokohama Port in the 1960s. Abrupt increases in the cysts of Gyrodinium instriatum cysts strongly suggests that a red tide was caused by this species around 1985. Dinoflagellate cyst assemblages in surface sediments appear to be good biomarkers of changes in the water quality of enclosed seas.
Resumo:
The seafloor of central Eckernförde Bay is characterised by soft muddy sediments that contain free methane gas. Bubbles of free gas cause acoustic turbidity which is observed with acoustic remote sensing systems. Repeated surveys with subbottom profiler and side scan sonar revealed an annual period both of depth of the acoustic turbidity and backscatter strength. The effects are delayed by 3–4 months relative to the atmospheric temperature cycle. In addition, prominent pockmarks, partly related to gas seepage, were detected with the acoustic systems. In a direct approach gas concentrations were measured from cores using the gas chromatography technique. From different tests it is concluded that subsampling of a core should start at its base and should be completed as soon as possible, at least within 35 min after core recovery. Comparison of methane concentrations of summer and winter cores revealed no significant seasonal variation. Thus, it is concluded that the temperature and pressure influences upon solubility control the depth variability of acoustic turbidity which is observed with acoustic remote sensing systems. The delay relative to the atmospheric temperature cycle is caused by slow heat transfer through the water column. The atmospheric temperature cycle as ‘exiting function’ for variable gas solubility offers an opportunity for modelling and predicting the depth of the acoustic turbidity. In practice, however, small-scale variations of, e.g., salinity, or gas concentration profile in the sediment impose limits to predictions. In addition, oceanographic influences as mixing in the water column, variable water inflow, etc. are further complications that reduce the reliability of predictions.
Resumo:
Heat shock protein 22 (HSP22) is an important member of small heat shock protein (sHSP) subfamily which plays a key role in the process of protecting cells, facilitating the folding of nascent peptides, and responding to stress. In the present study, the cDNA of HSP22 was cloned from Argopecten irradians (designated as AiHSP22) by rapid amplification cDNA end (RACE) based on the expressed sequence tags (ESTs). The full-length cDNA of AiHSP22 was of 1,112 bp, with an open reading frame of 588 bp encoding a polypeptide of 195 amino acids. The deduced amino acid sequence of AiHSP22 showed high similarity to previously identified HSP22s. The expression patterns of AiHSP22 mRNA in different tissues and in haemocytes of scallops exposed to Cd2+, Pb2+ or Cu2+ were investigated by real-time quantitative RT-PCR. The mRNA of AiHSP22 was constitutively expressed in all examined tissues, including haemocyte, muscle, kidney, gonad, gill and heart. The expression level in heart and muscle was higher than that in other tissues. The mRNA level of AiHSP22 in haemocytes was up-regulated after a 10 days exposure of scallops to Cu2+, Pb2+ and Cd2+. However, the expression of AiHSP22 did not increase linearly along with the rise of heavy metal concentration. Different concentrations of the same metal resulted in different effects on AiHSP22 expression. The sensitive response of AiHSP22 to Cu2+, Pb2+ and Cd2+ stress indicated that it could be developed as an indicator of exposure to heavy metals for the pollution monitoring programs in aquatic environment.
Resumo:
The bay scallop (Argopecten irradians irradians Lamarck 1819) has become one of the most important aquaculture species in China. Genetic improvement of cultured bay scallop can benefit greatly from a better understanding of its genome. In this study, we developed amplified fragment length polymorphisms (AFLPs) and simple sequence repeat markers from expressed sequence tags (EST-SSRs) for linkage analysis in bay scallop. Segregation of 390 AFLP and eight SSR markers was analysed in a mapping population of 97 progeny. Of the AFLP markers analysed, 326 segregated in the expected 1:1 Mendelian ratio, while the remaining 74 (or 19.0%) showed significant deviation, with 33 (44.6%) being deficient in heterozygotes (A/a). Among the eight polymorphic EST-SSR loci, one marker (12.5%) was found skewing from its expected Mendelian ratios. Eighteen per cent of the markers segregating from female parent were distorted compared with 21% of the markers segregating from male parent. The female map included 147 markers in 17 linkage groups (LGs) and covered 1892.4 cM of the genome. In the male map, totally 146 AFLP and SSR markers were grouped in 18 LGs spanning 1937.1 cM. The average inter-marker spacing in female and male map was 12.9 and 13.3 cM respectively. The AFLP and SSR markers were distributed evenly throughout the genome except for a few large gaps over 20 cM. Although preliminary, the genetic maps presented here provide a starting point for the mapping of the bay scallop genome.
Resumo:
Metallothionein (MT) is a superfamily of cysteine-rich proteins contributing to metal metabolism, detoxification of heavy metals, and immune response such as protecting against ionizing radiation and antioxidant defense. A metallothionein (designated AiMT2) gene was identified and cloned from bay scallop, Argopecten irradians. The full length cDNA of AiMT2 consisted of an open reading frame (ORF) of 333 bp encoding a protein of 110 amino acids. with nine characteristic Cys-X-Cys, five Cys-X-X-Cys, five Cys-X-X-X-Cys and two Cys-Cys motif arrangements and a conserved structural pattern Cys-x-Cys-x(3)-Cys-Tyr-x(3)Cys-x-Cys-x(3)-Cys-x-Cys-Arg at the C-terminus. The cloned ANT showed about 50% identity in the deduced amino acid sequence with previously published MT sequences of mussels and oysters. The conserved structural pattern and the close phylogenetic relationship of AiMT2 shared with MTs from other mollusc especially bivalves indicated that AiMT2 was a new member of molluscan MT family. The mRNA transcripts in hemolymph of AiMT2 under cadmium (Cd) exposure and bacteria challenge were examined by real-time RT-PCR. The mRNA expression of AiMT2 was up-regulated to 3.99-fold at 2 h after Listonella anguillarum challenge, and increased drastically to 66.12-fold and 126.96-fold at 16 and 32 h post-challenge respectively. Cadmium ion exposure could induce the expression of AiMT2, and the expression level increased 2.56-fold and 6.91-fold in hemolymph respectively after a 10-day exposure of 100 mu g L-1 and 200 mu g L-1 CdCl2. The sensitivity of AiMT2 to bacteria challenge and cadmium stress indicated it was a new Cd-dependent MT in bay scallop and also regulated by an immune challenge. The changes in the expression of AiMT2 could be used as an indicator of exposure to metals in pollution monitoring programs and oxidative stress, and bay scallop as a potential sentinel organism for the cadmium contamination in aquatic environment. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The family of fibrinogen-related proteins (FREPs) is a group of proteins with fibrinogen-like domains. Many members of this family play important roles as pattern recognition receptors in innate immune responses. The cDNA of bay scallop Argopecten irradians FREP (designated as AiFREP) was cloned by rapid amplification of cDNA ends (RACE) method based on the expressed sequence tag (EST). The full-length cDNA of AiFREP was of 990 bp. The open reading frame encoded a polypeptide of 251 amino acids, including a signal sequence and a 213 amino acids fibrinogen-like domain. The fibrinogen-like domain of AiFREP was highly similar to those of mammalian ficolins and other FREPs. The temporal expression of AiFREP mRNA in hemolymph was examined by fluorescent quantitative real-time PCR. The mRNA level of scallops challenged by Listonella anguillarum was significantly up-regulated, peaked to 9.39-fold at 9 h after stimulation, then dropped back to 4.37-fold at 12 h, while there was no significant change in the Micrococcus luteus challenged group in all periods of treatment. The function of AiFREP was investigated by recombination and expression of the cDNA fragment encoding its mature peptide in Escherichia coli Rosetta gami (DE3). The recombinant AiFREP (rAiFREP) agglutinated chicken erythrocytes and human A, B, O-type erythrocytes. The agglutinating activities were calcium-dependent and could be inhibited by acetyl group-containing carbohydrates. rAiFREP also agglutinated Gram-negative bacteria E. coli JM109, L anguillarum and Gram-positive bacteria M. luteus in the presence of calcium ions. These results collectively suggested that AiFREP functions as a pattern recognition receptor in the immune response of bay scallop and contributed to nonself recognition in invertebrates, which would also provide clues for elucidating the evolution of the lectin pathway of the complement system. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
C-type lectins are Ca2+ dependent carbohydrate-recognition proteins that play crucial roles in the invertebrate innate immunity, such as nonself recognition, activation of proPO system, antibacterial activity, promotion of phagocytosis and nodule formation. In this study, a novel C-type lectin of bay scallops Argopecten irradians (Ai Lec) was identified using expressed sequence tag (EST) and RACE techniques. The Ai Lec cDNA encoded a polypeptide of 171 amino acids with a putative signal peptide of 21 amino acid residues and a mature protein of 150 amino acids. The deduced amino acid sequence of Ai Lec was highly similar to those of the C-type lectins from other animals and contained a typical carbohydrate-recognition domain (CRD) of 131 residues, which has four conserved disulfide-bonded cysteine residues that define the CRD and two additional cysteine residues at the amino terminus. The expression of Ai Lec transcript was dominantly detected in the hepatopancreas and slightly detected in the haemocytes of normal scallops. 6 h after Vibrio anguillarum-challenge and 8 h after Micrococcus luteus-challenge, the temporal expression of Ai Lec mRNA in hemocytes was increased by 4.4- and 3.6-folds, respectively. The results suggested that Ai Lec was a constitutive and inducible acute-phase protein and might be involved in immune response to Gram-negative and Gram-positive microbial infection in bay scallop A. irradians.
Resumo:
The shell traits and weight traits are measured in cultured populations of bay scallop, Argopecten irradians. The results of regression analysis show that the regression relationships for all the traits are significant (P < 0.01). The correlative coefficients between body weight, as well as tissue weight with shell length, shell height and shell width are significant (P < 0.05). But the correlative coefficients between the anterior and posterior auricle length with body weight as well as tissue weight are not significant (P > 0.05). The multiple regression equation is obtained to estimate live body weight and tissue weight. The above traits except anterior and posterior auricle length are used for the growth and production comparison among three cultured populations, Duncan's new multiple range procedure analysis shows that all the traits in the Lingshuiqiao (LSQ) population are much more significant than those of the other two populations (P < 0.01), and there is no significant difference between the Qipanmo (QPM) and Dalijia (DLJ) populations in all traits (P > 0.05). The results indicate that the LSQ population has a higher growth rate and is expected to be more productive than the other two populations.
Resumo:
Scanning electron microscopy of the surfaces of the seaweeds Laminaria japonica, haploid Porphyra yezoensis, Ulva pertusa and the diploid conchocelis of P. yezoensis and P. haitanensis revealed Vibrio and Micrococcus to be abundant on the surfaces of U. pertusa and P. yezoensis. Vibrio, Flavobacterium, Pseudomonas, Staphylococcus, Bacillus, Corynebacterium and other genera were isolated from the surfaces of L. japonica.
Resumo:
Environmental microbiology investigation was carried out in Jiaozhou Bay to determine the source and distribution of tetracycline-resistant bacteria and their resistance mechanisms. At least 25 species or the equivalent molecular phylogenetic taxa in 16 genera of resistant bacteria could be identified based on 16S ribosomal deoxyribonucleic acid sequence analysis. Enterobacteriaceae, Pseudomonadaceae, and Vibrionaceae constituted the majority of the typical resistant isolates. Indigenous estuarine and marine Halomonadaceae, Pseudoalteromonadaceae, Rhodobacteraceae, and Shewanellaceae bacteria also harbored tetracycline resistance. All the six resistance determinants screened, tet(A)-(E) and tet(G), could be detected, and the predominant genes were tet(A), tet(B), and tet(G). Both anthropogenic activity-related and indigenous estuarine or coastal bacteria might contribute to the tet gene reservoir, and resistant bacteria and their molecular determinants may serve as bioindicators of coastal environmental quality. Our work probably is the first identification of tet(E) in Proteus, tet(G) in Acinetobacter, tet(C) and tet(D) in Halomonas, tet(D) and tet(G) in Shewanella, and tet(B), tet(C), tet(E), and tet(G) in Roseobacter.