812 resultados para Islet amyloid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cytokine-induced transcription of the serum amyloid A3 (SAA3) gene promoter requires a transcriptional enhancer that contains three functional elements: two C/EBP-binding sites and a third site that interacts with a constitutively expressed transcription factor, SAA3 enhancer factor (SEF). Deletion or site-specific mutations in the SEF-binding site drastically reduced SAA3 promoter activity, strongly suggesting that SEF is important in SAA3 promoter function. To further elucidate its role in the regulation of the SAA3 gene, we purified SEF from HeLa cell nuclear extracts to near homogeneity by using conventional liquid chromatography and DNA-affinity chromatography. Ultraviolet cross-linking and Southwestern experiments indicated that SEF consisted of a single polypeptide with an apparent molecular mass of 65 kDa. Protein sequencing, oligonucleotide competition and antibody supershift experiments identified SEF as transcription factor LBP-1c/CP2/LSF. Cotransfection of SEF expression plasmid with SAA3-luciferase reporter resulted in 3- to 5-fold activation of SAA3 promoter. Interestingly, when SEF-transfected cells were treated with either conditioned medium (CM) or interleukin (IL) 1, the SAA3 promoter was synergistically activated in a dose-dependent manner. Furthermore, when SEF-binding site was mutated, the response of SAA3 promoter to IL-1 or CM stimulation was abolished or drastically decreased, suggesting that SEF may functionally cooperate with an IL-1-inducible transcription factor. Indeed, our functional studies showed that NFκB is a key transcription factor that mediates the IL-1-induced expression of SAA3 gene, and that SEF can synergize with NFκBp65 to activate SAA3 promoter. By coimmunoprecipitation experiments, we found that SEF could specifically interact with NFκBp65, and that the association of these two factors was enhanced upon IL-1 and CM stimulation. This suggests that the molecular basis for the functional synergy between SEF and NFκB may be due to the ability of SEF to physically interact with NPκB. In addition to its interaction with SEF, NFκB-dependent activation also requires the weak κB site in the C element and its interaction with C/EBP. Besides its role in regulating SAA3 gene expression, we provide evidence that SEF could also bind in a sequence-specific manner to the promoters of α2-macroglobulin, Aα fibrinogen, and 6–16 genes and to an intronic enhancer of the human Wilm's tumor 1 gene, suggesting a functional role in the regulation of these genes. By coimmunoprecipitation experiments, we determined that SEF could specifically associate with both Stat3 and Stat2 upon cytokine stimulation. To examine the functional roles of such interactions, we evaluated the effects of SEF on the transcriptional regulation of two reporter genes: Aα fibrinogen and 6–16, which are IL-6- and interferon-α-responsive, respectively. Our results showed that cotransfection of SEF expression plasmid can activate the expression of Aα fibrinogen gene and 6–16 gene. Moreover, SEF can dramatically enhance the interferon-α-induced expression of 6–16 gene and IL-6-induced expression of Aα fibrinogen gene, suggesting that SEF may functionally cooperate with ISGF3 and Stat3 to mediate interferon-α and IL-6 signaling. ^ Our findings that SEF can interact with multiple cytokine-inducible transcription factors to mediate the expression of target genes open a new avenue of investigation of cooperative transcriptional regulation of gene expression, and should further our understanding of differential gene expression in response to a specific stimulus. In summary, our data provide evidence that SEF can mediate the signaling of different cytokines by interacting with various cytokine-inducible transcription factors. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacterial meningitis causes neuronal apoptosis in the hippocampal dentate gyrus, which is associated with learning and memory impairments after cured disease. The execution of the apoptotic program involves pathways that converge on activation of caspase-3, which is required for morphological changes associated with apoptosis. Here, the time course and the role of caspase-3 in neuronal apoptosis was assessed in an infant rat model of pneumococcal meningitis. During clinically asymptotic meningitis (0-12 h after infection), only minor apoptotic damage to the dentate gyrus was observed, while the acute phase (18-24 h) was characterized by a massive increase of apoptotic cells, which peaked at 36 h. In the subacute phase of the disease (36-72 h), the number of apoptotic cells decreased to control levels. Enzymatic caspase-3 activity was significantly increased in hippocampal tissue of infected animals compared to controls at 22 h. The activated enzyme was localized to immature cells of the dentate gyrus, and in vivo activity was evidenced by cleavage of the amyloid-beta precursor protein. Intracisternal administration of the caspase-3-specific inhibitor Ac-DEVD-CHO significantly reduced apoptosis in the hippocampal dentate gyrus. In contrast to a study where the decrease of hippocampal apoptosis after administration of a pan-caspase inhibitor was due to downmodulation of the inflammatory response, our data demonstrate that specific inhibition of caspase-3 did not affect inflammation assessed by TNF-alpha and IL-1beta concentrations in the cerebrospinal fluid space. Taken together, the present results identify caspase-3 as a key effector of neuronal apoptosis in pneumococcal meningitis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microbial exposures and sex hormones exert potent effects on autoimmune diseases, many of which are more prevalent in women. We demonstrate that early-life microbial exposures determine sex hormone levels and modify progression to autoimmunity in the nonobese diabetic (NOD) mouse model of type 1 diabetes (T1D). Colonization by commensal microbes elevated serum testosterone and protected NOD males from T1D. Transfer of gut microbiota from adult males to immature females altered the recipient's microbiota, resulting in elevated testosterone and metabolomic changes, reduced islet inflammation and autoantibody production, and robust T1D protection. These effects were dependent on androgen receptor activity. Thus, the commensal microbial community alters sex hormone levels and regulates autoimmune disease fate in individuals with high genetic risk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Latrepirdine (Dimebon) is a pro-neurogenic, antihistaminic compound that has yielded mixed results in clinical trials of mild to moderate Alzheimer's disease, with a dramatically positive outcome in a Russian clinical trial that was unconfirmed in a replication trial in the United States. We sought to determine whether latrepirdine (LAT)-stimulated amyloid precursor protein (APP) catabolism is at least partially attributable to regulation of macroautophagy, a highly conserved protein catabolism pathway that is known to be impaired in brains of patients with Alzheimer's disease (AD). We utilized several mammalian cellular models to determine whether LAT regulates mammalian target of rapamycin (mTOR) and Atg5-dependent autophagy. Male TgCRND8 mice were chronically administered LAT prior to behavior analysis in the cued and contextual fear conditioning paradigm, as well as immunohistological and biochemical analysis of AD-related neuropathology. Treatment of cultured mammalian cells with LAT led to enhanced mTOR- and Atg5-dependent autophagy. Latrepirdine treatment of TgCRND8 transgenic mice was associated with improved learning behavior and with a reduction in accumulation of Aβ42 and α-synuclein. We conclude that LAT possesses pro-autophagic properties in addition to the previously reported pro-neurogenic properties, both of which are potentially relevant to the treatment and/or prevention of neurodegenerative diseases. We suggest that elucidation of the molecular mechanism(s) underlying LAT effects on neurogenesis, autophagy and behavior might warranty the further study of LAT as a potentially viable lead compound that might yield more consistent clinical benefit following the optimization of its pro-neurogenic, pro-autophagic and/or pro-cognitive activities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immunoglobulin light-chain (AL) amyloidosis is a form of systemic amyloidosis in which the fibrils are derived from monoclonal light chains. We report a case of a 66-year-old woman presenting with nail changes, parchment-like hand changes, progressive alopecia and sicca syndrome. Histopathological studies of biopsy specimens of the scalp, the nail, minor labial salivary glands and abdominal skin revealed deposits of AL κ-type amyloid. Urine protein electrophoresis exhibited a weak band of κ-type light chains. Based on this striking case, we here review the characteristic nail and hair manifestations associated with systemic amyloidosis. Knowledge of these signs is important for an early diagnosis of systemic amyloidosis, identification of the underlying disease and patient management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elevation of ketone bodies occurs frequently after parturition during negative energy balance in high yielding dairy cows. Previous studies illustrated that hyperketonemia interferes with metabolism and it is assumed that it impairs the immune response. However, a causative effect of ketone bodies could not be shown in vivo before, because spontaneous hyperketonemia comes usually along with high NEFA and low glucose concentrations. The objective was to study effects of beta-hydroxybutyrate (BHBA) infusion and an additional intramammary lipopolysaccharide (LPS) challenge on metabolism and immune response in dairy cows. Thirteen dairy cows received intravenously either a BHBA infusion (group BHBA, n=5) to induce hyperketonemia (1.7 mmol/L), or an infusion with a 0.9 % saline solution (Control, n=8) for 56 h. Infusions started at 0900 on day 1 and continue up to 1700 two days later. Two udder quarters were challenged with 200 μg Escherichia coli-LPS 48 h after the start of infusion. Blood samples were taken one week and 2 h before the start of infusions as reference samples and hourly during the infusion. Liver and mammary gland biopsies were taken one week before the start of the infusion, 48 h after the start of the infusion, and mammary tissues was additionally taken 8 h after LPS challenge (56 h after the start of infusions). Rectal temperature (RT) and somatic cell count (SCC) was measured before and 48 h after the start of infusions and hourly during LPS challenge. Blood samples were analyzed for plasma glucose, BHBA, NEFA, triglyceride, urea, insulin, glucagon, and cortisol concentration. The mRNA abundance of factors related to potential adaptations of metabolism and immune system was measured in liver and mammary tissue biopsies. Differences between blood constituents, RT, SCC, and mRNA abundance before and 48 h after the start of infusions, and differences between mRNA abundance before and after LPS challenges were tested for significance by GLM of SAS procedure with treatment as fixed effect. Area under the curve was calculated for blood variables during 48 h BHBA infusion and during the LPS challenge, and additionally for RT and SCC during the LPS challenge. Most surprisingly, both plasma glucose and glucagon concentration decreased during the 48 h of BHBA infusion (P<0.05). During the 48 h of BHBA infusion, serum amyloid A mRNA abundance in mammary gland was increased (P<0.01), and haptoglobin (Hp) mRNA abundance tended to increase in cows treated with BHBA compared to control group (P= 0.07). RT, SCC, and candidate genes related to immune response in the liver were not affected by BHBA infusion. However, during LPS challenge the expected increase of both plasma glucose and glucagon concentration was much less pronounced in the animals treated with BHBA (P<0.05) and also SCC increased much less pronounced in the animals infused with BHBA (P<0.05) than in the controls. An increased BHBA infusion rate to maintain plasma BHBA constant could not fully compensate for the decreased plasma BHBA during the LPS challenge which indicates that BHBA is used as an energy source during the immune response. In addition, BHBA infused animals showed a more pronounced increase of mRNA abundance of IL-8, IL-10, and citrate synthase in the mammary tissue of LPS challenged quarters (P<0.05) than control animals. Results demonstrate that infusion of BHBA affects metabolism through decreased plasma glucose concentration which is likely related to a decreased release of glucagon during hyperketonemia and during additional inflammation. It also affects the systemic and mammary immune response which may reflect the increased susceptibility for mastitis during spontaneous hyperketonemia. The obviously reduced gluconeogenesis in response to BHBA infusion may be a mechanism to stimulated the use of BHBA as an energy source instead of glucose, and/or to save oxaloacetate for the citric acid cycle instead of gluconeogenesis and as a consequence to reduce ketogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hyperplastic changes of the neuroendocrine cell system may have the potential to evolve into neoplastic diseases. This is particularly the case in the setting of genetically determined and hereditary neuroendocrine tumor syndromes such as MEN1. The review discusses the MEN1-associated hyperplasia-neoplasia sequence in the development of gastrinomas in the duodenum and glucagon-producing tumors in the pancreas. It also presents other newly described diseases (e.g., glucagon cell adenomatosis and insulinomatosis) in which the tumors are (or most likely) also preceded by islet cell hyperplasia. Finally, the pseudohyperplasia of PP-rich islets in the pancreatic head is defined as a physiologic condition clearly differing from other hyperplastic-neoplastic neuroendocrine diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metabolic adaptations during negative energy and nutrient balance in dairy cows are thought to cause impaired immune function and hence increased risk of infectious diseases, including mastitis. Characteristic adaptations mostly occurring in early lactation are an elevation of plasma ketone bodies and free fatty acids (nonesterified fatty acids, NEFA) and diminished glucose concentration. The aim of this study was to investigate effects of elevated plasma β-hydroxybutyrate (BHBA) at simultaneously even or positive energy balance and thus normal plasma NEFA and glucose on factors related to the immune system in liver and mammary gland of dairy cows. In addition, we investigated the effect of elevated plasma BHBA and intramammary lipopolysaccharide (LPS) challenge on the mammary immune response. Thirteen dairy cows were infused either with BHBA (HyperB, n=5) to induce hyperketonemia (1.7 mmol/L) or with a 0.9% saline solution (NaCl, n=8) for 56 h. Two udder quarters were injected with 200 μg of LPS after 48 h of infusion. Rectal temperature (RT) and somatic cell counts (SCC) were measured before, at 48 h after the start of infusions, and hourly during the LPS challenge. The mRNA abundance of factors related to the immune system was measured in hepatic and mammary tissue biopsies 1 wk before and 48 h after the start of the infusion, and additionally in mammary tissue at 56 h of infusion (8h after LPS administration). At 48 h of infusion in HyperB, the mRNA abundance of serum amyloid A (SAA) in the mammary gland was increased and that of haptoglobin (Hp) tended to be increased. Rectal temperature, SCC, and mRNA abundance of candidate genes in the liver were not affected by the BHBA infusion until 48 h. During the following LPS challenge, RT and SCC increased in both groups. However, SCC increased less in HyperB than in NaCl. Quarters infused with LPS showed a more pronounced increase of mRNA abundance of IL-8 and IL-10 in HyperB than in NaCl. The results demonstrate that an increase of plasma BHBA upregulates acute phase proteins in the mammary gland. In response to intramammary LPS challenge, elevated BHBA diminishes the influx of leukocytes from blood into milk, perhaps by via modified cytokine synthesis. Results indicate that increased ketone body plasma concentrations may play a crucial role in the higher mastitis susceptibility in early lactation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During inflammation, serum amyloid A proteins transport retinol to infected tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eosinophils are white blood cells that function in innate immunity and participate in the pathogenesis of various inflammatory and neoplastic disorders. Their secretory granules contain four cytotoxic proteins, including the eosinophil major basic protein (MBP-1). How MBP-1 toxicity is controlled within the eosinophil itself and activated upon extracellular release is unknown. Here we show how intragranular MBP-1 nanocrystals restrain toxicity, enabling its safe storage, and characterize them with an X-ray-free electron laser. Following eosinophil activation, MBP-1 toxicity is triggered by granule acidification, followed by extracellular aggregation, which mediates the damage to pathogens and host cells. Larger non-toxic amyloid plaques are also present in tissues of eosinophilic patients in a feedback mechanism that likely limits tissue damage under pathological conditions of MBP-1 oversecretion. Our results suggest that MBP-1 aggregation is important for innate immunity and immunopathology mediated by eosinophils and clarify how its polymorphic self-association pathways regulate toxicity intra- and extracellularly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In addition to cognitive decline, individuals affected by Alzheimer's disease (AD) can experience important neuropsychiatric symptoms including sleep disturbances. We characterized the sleep-wake cycle in the TgCRND8 mouse model of AD, which overexpresses a mutant human form of amyloid precursor protein resulting in high levels of β-amyloid and plaque formation by 3 months of age. Polysomnographic recordings in freely-moving mice were conducted to study sleep-wake cycle architecture at 3, 7 and 11 months of age and corresponding levels of β-amyloid in brain regions regulating sleep-wake states were measured. At all ages, TgCRND8 mice showed increased wakefulness and reduced non-rapid eye movement (NREM) sleep during the resting and active phases. Increased wakefulness in TgCRND8 mice was accompanied by a shift in the waking power spectrum towards fast frequency oscillations in the beta (14-20 Hz) and low gamma range (20-50 Hz). Given the phenotype of hyperarousal observed in TgCRND8 mice, the role of noradrenergic transmission in the promotion of arousal, and previous work reporting an early disruption of the noradrenergic system in TgCRND8, we tested the effects of the alpha-1-adrenoreceptor antagonist, prazosin, on sleep-wake patterns in TgCRND8 and non-transgenic (NTg) mice. We found that a lower dose (2 mg/kg) of prazosin increased NREM sleep in NTg but not in TgCRND8 mice, whereas a higher dose (5 mg/kg) increased NREM sleep in both genotypes, suggesting altered sensitivity to noradrenergic blockade in TgCRND8 mice. Collectively our results demonstrate that amyloidosis in TgCRND8 mice is associated with sleep-wake cycle dysfunction, characterized by hyperarousal, validating this model as a tool towards understanding the relationship between β-amyloid overproduction and disrupted sleep-wake patterns in AD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mycoplasma bovis is an emerging bacterial agent causing bovine mastitis. Although these cell wall-free bacteria lack classical virulence factors, they are able to activate the immune system of the host. However, effects on the bovine mammary immune system are not yet well characterized and detailed knowledge would improve the prevention and therapy of mycoplasmal mastitis. The aim of this study was to investigate the immunogenic effects of M. bovis on the mammary gland in an established primary bovine mammary epithelial cell (bMEC) culture system. Primary bMEC of four different cows were challenged with live and heat-inactivated M. bovis strain JF4278 isolated from acute bovine mastitis, as well as with the type strain PG45. The immune response was evaluated 6 and 24h after mycoplasmal challenge by measuring the relative mRNA expression of selected immune factors by quantitative PCR. M. bovis triggered an immune response in bMEC, reflected by the upregulation of tumor necrosis factor-α, interleukin(IL)-1β, IL-6, IL-8, lactoferrin, Toll-like receptor-2, RANTES, and serum amyloid A mRNA. Interestingly, this cellular reaction was only observed in response to live, but not to heat-inactivated M. bovis, in contrast to other bacterial pathogens of mastitis such as Staphylococcus aureus. This study provides evidence that bMEC exhibit a strong inflammatory reaction in response to live M. bovis. The lack of a cellular response to heat-inactivated M. bovis supports the current hypothesis that mycoplasmas activate the immune system through secreted secondary metabolites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inability to maintain genomic stability and control proliferation are hallmarks of many cancers, which become exacerbated in the presence of unrepaired DNA damage. Such genotoxic stresses trigger the p53 tumor suppressor network to activate transient cell cycle arrest allowing for DNA repair; if the damage is excessive or irreparable, apoptosis or cellular senescence is triggered. One of the major DNA repair pathway that mends DNA double strand breaks is non-homologous end joining (NHEJ). Abrogating the NHEJ pathway leads to an accumulation of DNA damage in the lymphoid system that triggers p53-mediated apoptosis; complete deletion of p53 in this system leads to aggressive lymphomagenesis. Therefore, to study the effect of p53-dependent cell cycle arrest, we utilized a hypomorphic, separation-of-function mutant, p53p/p, which completely abrogates apoptosis yet retains partial cell cycle arrest ability. We crossed DNA ligase IV deficiency, a downstream ligase crucial in mending breaks during NHEJ, into the p53p/p background (Lig4-/-p53p/p). The accumulation of DNA damage activated the p53/p21 axis to trigger cellular senescence in developing lymphoid cells, which absolutely suppressed tumorigenesis. Interestingly, these mice progressively succumb to severe diabetes. Mechanistic analysis revealed that spontaneous DNA damage accumulated in the pancreatic b-cells, a unique subset of endocrine cells solely responsible for insulin production to regulate glucose homeostasis. The genesis of adult b-cells predominantly occurs through self-replication, therefore modulating cellular proliferation is an essential component for renewal. The progressive accumulation of DNA damage, caused by Lig4-/-, activated p53/p21-dependent cellular senescence in mutant pancreatic b-cells that lead to islet involution. Insulin levels subsequently decreased, deregulating glucose homeostasis driving overt diabetes. Our Lig4-/-p53p/p model aptly depicts the dichotomous role of cellular senescence—in the lymphoid system prevents tumorigenesis yet in the endocrine system leads to the decrease of insulin-producing cells causing diabetes. To further delineate the function of NHEJ in pancreatic b-cells, we analyzed mice deficient in another component of the NHEJ pathway, Ku70. Although most notable for its role in DNA damage recognition and repair within the NHEJ pathway, Ku70 has NHEJ-independent functions in telomere maintenance, apoptosis, and transcriptional regulation/repression. To our surprise, Ku70-/-p53p/p mutant mice displayed a stark increase in b-cell proliferation, resulting in islet expansion, heightened insulin levels and hypoglycemia. Augmented b-cell proliferation was accompanied with the stabilization of the canonical Wnt pathway, responsible for this phenotype. Interestingly, the progressive onset of cellular senescence prevented islet tumorigenesis. This study highlights Ku70 as an important modulator in not only maintaining genomic stability through NHEJ-dependent functions, but also reveals a novel NHEJ-independent function through regulation of pancreatic b-cell proliferation. Taken in aggregate, these studies underscore the importance for NHEJ to maintain genomic stability in b-cells as well as introduces a novel regulator for pancreatic b-cell proliferation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mutations in the p53 tumor suppressor gene are found in over 50% of human tumors and in the germline of Li-Fraumeni syndrome families. About 80% of these mutations are missense in nature. In order to study how p53 missense mutations affect tumorigenesis in vivo, we focused on the murine p53 arg-to-his mutation at amino acid 172, which corresponds to the human hot spot mutation at amino acid 175. The double replacement procedure was employed to introduce the p53 R172H mutation into the p53 locus of ES cells and mice were generated. An additional 1bp deletion in the intron 2 splice acceptor site was detected in the same allele in mice. We named this allele p53R172HΔg. This allele makes a small amount of full length p53 mutant protein. ^ Spontaneous tumor formation and survival were studied in these mice. Mice heterozygous for the p53R172HΔg allele showed 50% survival at 17 months of age, similar to the p53+/− mice. Moreover, the p53R172HΔg/+ mice showed a distinct tumor spectrum: 55% sarcomas, including osteosarcoms, fibrosarcomas and angiosarcomas; 27% carcinomas, including lung adenocarcinomas, squamous cell carcinomas, hepatocellular carcinomas and islet cell carcinomas; and 18% lymphomas. Compared to the p53+/− mice, there was a clear increase in the frequency of carcinoma development and a decrease in lymphoma incidence. Among the sarcomas that developed, fibrosarcomas in the skin were also more frequently observed. More importantly, osteosarcomas and carinomas that developed in the p53R172HΔg/+ mice metastasized at very high frequency (64% and 67%, respectively) compared with less than 10% in the p53+/− mice. The metastatic lesions were usually found in lung and liver, and less frequently in other tissues. The altered tumor spectrum in the mice and increased metastatic potential of the tumors suggested that the p53R172H mutation represents a gain-of-function. ^ Mouse embryonic fibroblasts (MEFs) from the mice homozygous and heterozygous for the p53R172HΔg allele were studied for growth characteristics, immortalization potential and genomic instability. All of the p53R172HΔg /+ MEF lines are immortalized under a 3T3 protocol while under the same protocol p53+/− MEFs are not immortalized. Karyotype analysis showed a persistent appearance of chromosome end-to-end fusion in the MEFs both homozygous and heterozygous for the p53R172HΔg allele. These observations suggest that increased genomic instability in the cells may cause the altered tumor phenotypes. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alzheimer’s Disease (AD) is the most common dementia in the elderly and is estimated to affect tens of millions of people worldwide. AD is believed to have a prodromal stage lasting ten or more years. While amyloid deposits, tau filaments, and loss of brain cells are characteristics of the disease, the loss of dendritic spines and of synapses predate such changes. Popular preclinical detection strategies mainly involve cerebrospinal fluid biomarkers, magnetic resonance imaging, metabolic PET scans, and amyloid imaging. One strategy missing from this list involves neurophysiological measures, which might be more sensitive to detect alterations in brain function. The Magnetoencephalography International Consortium of Alzheimer’s Disease arose out of the need to advance the use of Magnetoencephalography (MEG), as a tool in AD and pre-AD research. This paper presents a framework for using MEG in dementia research, and for short-term research priorities