907 resultados para Integrated model of information behaviour


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Activating mutations of the anaplastic lymphoma receptor tyrosine kinase gene (ALK) were identified in both somatic and familial neuroblastoma. The most common somatic mutation, F1174L, is associated with NMYC amplification and displayed an efficient transforming activity in vivo. In addition, both AKL-F1174L and NMYC were shown cooperate in neuroblastoma tumorigenesis in animal models. To analyse the role of ALK mutations in the oncogenesis of neuroblastoma, ALK wt and various ALK mutants were transduced in murine neural crest stem cells (MONC1). Methods: ALK-wt, and F1174L, and R1275Q mutants were stably expressed by retroviral infection using the pMIGR1 vector in the murine neural crest stem cell line MONC-1, previously immortalised with v-myc, and further implanted subcutaneously or orthotopically in nude mice. Results: Both MONC1-ALK-F1174L and -R1275Q cells displayed a rapid tumour forming capacity upon subcutaneous injection in nude mice compared to control MONC1-MIGR or MONC1 cells. Interestingly, the transforming capacity of the F1174L mutant was much more potent compared to that of R1275Q mutant in murine neural crest stem cells, while ALK-wt was not tumorigenic. In addition, mice implanted orthotopically in the left adrenal gland with MONC1-ALK-F1174L cells developed highly aggressive tumours in 100% of mice within three weeks, while MONC1-Migr or MONC1 derived tumours displayed a longer latency and a reduced tumour take. Conclusions: The activating ALK-F1174L mutant is highly tumorigenic in neural crest stem cells. Nevertheless, we cannot exclude a functional implication of the v-myc oncogene used for MONC1 cells immortalisation. Indeed, the control MONC1-Migr and MONC1 cells were also able to derive subcutaneous and orthotopic tumours, although with considerable reduced efficiency. Further investigations using neural crest stem cell lacking exogenous myc expression are currently on way to assess the exclusive role of ALK mutations in NB oncogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oncogenesis is closely linked to abnormalities in cell differentiation. Notch signaling provides an important form of intercellular communication involved in cell fate determination, stem cell potential and differentiation. Here we review the role of this pathway in the integrated growth/differentiation control of the keratinocyte cell type, and the maintenance of normal skin homeostasis. In parallel with the pro-differentiation function of Notch1 in keratinocytes, we discuss recent evidence pointing to a tumor suppressor function of this gene in both mouse skin and human cervical carcinogenesis. The possibility that Notch signaling elicits signals with a duality of growth positive and negative function will be discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Viruses rapidly evolve, and HIV in particular is known to be one of the fastest evolving human viruses. It is now commonly accepted that viral evolution is the cause of the intriguing dynamics exhibited during HIV infections and the ultimate success of the virus in its struggle with the immune system. To study viral evolution, we use a simple mathematical model of the within-host dynamics of HIV which incorporates random mutations. In this model, we assume a continuous distribution of viral strains in a one-dimensional phenotype space where random mutations are modelled by di ffusion. Numerical simulations show that random mutations combined with competition result in evolution towards higher Darwinian fitness: a stable traveling wave of evolution, moving towards higher levels of fi tness, is formed in the phenoty space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leptospirosis in humans usually involves hypokalaemia and hypomagnesaemia and the putative mechanism underlying such ionic imbalances may be related to nitric oxide (NO) production. We previously demonstrated the correlation between serum levels of NO and the severity of renal disease in patients with severe leptospirosis. Methylene blue inhibits soluble guanylyl cyclase (downstream of the action of any NO synthase isoforms) and was recently reported to have beneficial effects on clinical and experimental sepsis. We investigated the occurrence of serum ionic changes in experimental leptospirosis at various time points (4, 8, 16 and 28 days) in a hamster model. We also determined the effect of methylene blue treatment when administered as an adjuvant therapy, combined with late initiation of standard antibiotic (ampicillin) treatment. Hypokalaemia was not reproduced in this model: all of the groups developed increased levels of serum potassium (K). Furthermore, hypermagnesaemia, rather than magnesium (Mg) depletion, was observed in this hamster model of acute infection. These findings may be associated with an accelerated progression to acute renal failure. Adjuvant treatment with methylene blue had no effect on survival or serum Mg and K levels during acute-phase leptospirosis in hamsters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolution of protein function appears to involve alternating periods of conservative evolution and of relatively rapid change. Evidence for such episodic evolution, consistent with some theoretical expectations, comes from the application of increasingly sophisticated models of evolution to large sequence datasets. We present here some of the recent methods to detect functional shifts, using amino acid or codon models. Both provide evidence for punctual shifts in patterns of amino acid conservation, including the fixation of key changes by positive selection. Although a link to gene duplication, a presumed source of functional changes, has been difficult to establish, this episodic model appears to apply to a wide variety of proteins and organisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chagas disease, caused by Trypanosoma cruzi, represents an endemic among Latin America countries. The participation of free radicals, especially nitric oxide (NO), has been demonstrated in the pathophysiology of seropositive individuals with T. cruzi. In Chagas disease, increased NO contributes to the development of cardiomyopathy and megacolon. Metallothioneins (MTs) are efficient free radicals scavengers of NO in vitro and in vivo. Here, we developed a murine model of the chronic phase of Chagas disease using endemic T. cruzi RyCH1 in BALB/c mice, which were divided into four groups: infected non-treated (Inf), infected N-monomethyl-L-arginine treated (Inf L-NAME), non-infected L-NAME treated and non-infected vehicle-treated. We determined blood parasitaemia and NO levels, the extent of parasite nests in tissues and liver MT-I expression levels. It was observed that NO levels were increasing in Inf mice in a time-dependent manner. Inf L-NAME mice had fewer T. cruzi nests in cardiac and skeletal muscle with decreased blood NO levels at day 135 post infection. This affect was negatively correlated with an increase of MT-I expression (r = -0.8462, p < 0.0001). In conclusion, we determined that in Chagas disease, an unknown inhibitory mechanism reduces MT-I expression, allowing augmented NO levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, hypothalamic activation was performed by dehydration-induced anorexia (DIA) and overnight food suppression (OFS) in female rats. The assessment of the hypothalamic response to these challenges by manganese-enhanced MRI showed increased neuronal activity in the paraventricular nuclei (PVN) and lateral hypothalamus (LH), both known to be areas involved in the regulation of food intake. The effects of DIA and OFS were compared by generating T-score maps. Increased neuronal activation was detected in the PVN and LH of DIA rats relative to OFS rats. In addition, the neurochemical profile of the PVN and LH were measured by (1) H MRS at 14.1T. Significant increases in metabolite levels were measured in DIA and OFS relative to control rats. Statistically significant increases in γ-aminobutyric acid were found in DIA (p=0.0007) and OFS (p<0.001) relative to control rats. Lactate increased significantly in DIA (p=0.03), but not in OFS, rats. This work shows that manganese-enhanced MRI coupled to (1) H MRS at high field is a promising noninvasive method for the investigation of the neural pathways and mechanisms involved in the control of food intake, in the autonomic and endocrine control of energy metabolism and in the regulation of body weight.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To evaluate whether anti-vascular endothelial growth factor (VEGF) neutralizing antibodies injected in the vitreous of rat eyes influence retinal microglia and macrophage activation. To dissociate the effect of anti-VEGF on microglia and macrophages subsequent to its antiangiogenic effect, we chose a model of acute intraocular inflammation. METHODS: Lewis rats were challenged with systemic lipopolysaccharide (LPS) injection and concomitantly received 5 µl of rat anti-VEGF-neutralizing antibody (1.5 mg/ml) in the vitreous. Rat immunoglobulin G (IgG) isotype was used as the control. The effect of anti-VEGF was evaluated at 24 and 48 h clinically (uveitis scores), biologically (cytokine multiplex analysis in ocular media), and histologically (inflammatory cell counts on eye sections). Microglia and macrophages were immunodetected with ionized calcium-binding adaptor molecule 1 (IBA1) staining and counted based on their differential shapes (round amoeboid or ramified dendritiform) on sections and flatmounted retinas using confocal imaging and automatic quantification. Activation of microglia was also evaluated with inducible nitric oxide synthase (iNOS) and IBA1 coimmunostaining. Coimmunolocalization of VEGF receptor 1 and 2 (VEGF-R1 and R2) with IBA1 was performed on eye sections with or without anti-VEGF treatment. RESULTS: Neutralizing rat anti-VEGF antibodies significantly decreased ocular VEGF levels but did not decrease the endotoxin-induced uveitis (EIU) clinical score or the number of infiltrating cells and cytokines in ocular media (interleukin [IL]-1β, IL-6, tumor necrosis factor [TNF]-α, and monocyte chemoattractant protein [MCP]-1). Eyes treated with anti-VEGF showed a significantly decreased number of activated microglia and macrophages in the retina and the choroid and decreased iNOS-positive microglia. IBA1-positive cells expressed VEGF-R1 and R2 in the inflamed retina. CONCLUSIONS: Microglia and macrophages expressed VEGF receptors, and intravitreous anti-VEGF influenced the microglia and macrophage activation state. Taking into account that anti-VEGF drugs are repeatedly injected in the vitreous of patients with retinal diseases, part of their effects could result from unsuspected modulation of the microglia activation state. This should be further studied in other ocular pathogenic conditions and human pathology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chagas disease or American trypanosomiasis is, together with geohelminths, the neglected disease that causes more loss of years of healthy life due to disability in Latin America. Chagas disease, as determined by the factors and determinants, shows that different contexts require different actions, preventing new cases or reducing the burden of disease. Control strategies must combine two general courses of action including prevention of transmission to prevent the occurrence of new cases (these measures are cost effective), as well as opportune diagnosis and treatment of infected individuals in order to prevent the clinical evolution of the disease and to allow them to recuperate their health. All actions should be implemented as fully as possible and with an integrated way, to maximise the impact. Chagas disease cannot be eradicated due because of the demonstrated existence of infected wild triatomines in permanent contact with domestic cycles and it contributes to the occurrence of at least few new cases. However, it is possible to interrupt the transmission ofTrypanosoma cruziin a large territory and to eliminate Chagas disease as a public health problem with a dramatic reduction of burden of the disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RÉSUMÉ : Le traitement répété à la phencyclidine (PCP), un bloqueur du récepteur NMDA (NMDAR), reproduit chez les rongeurs une partie de la symptomatologie typique de la schizophrénie. Le blocage prolongé du NMDAR par la PCP mime une hypofunction du NMDAR, une des principales altérations supposées exister dans les cerveaux des patients schizophréniques. Le but de notre étude était d'examiner les conséquences neurochimiques, métaboliques et fonctionnelles du traitement répété à la phencyclidine in vivo, au niveau du cortex préfrontal (cpf), une région cérébrale qui joue un rôle dans les déficits cognitifs observés chez les patients schizophréniques. Pour répondre à cette question, les rats ou les souris ont reçu chaque jour une injection soit de PCP (5 mg/kg), soit de solution saline, pendant 7 ou 14 jours. Les animaux ont ensuite été sacrifiés au moins 24 heures après le dernier traitement. Des tranches aiguës du cpf ont été préparées rapidement, puis stimulées avec une concentration élevée de KCI, de manière à induire une libération de glutamate à partir des terminaisons synaptiques excitatrices. Les résultats montrent que les tranches du cpf des animaux traités à la PCP ont libéré une quantité de glutamate significativement inférieure par rapport à celles des animaux contrôle. Ce déficit de libération a persisté 72 heures après la fin du traitement, tandis qu'il n'était pas observé dans le cortex visuel primaire, une autre région corticale. En outre, le traitement avec des antipsychotiques, l'halopéridol ou l'olanzapine, a supprimé le déficit induit par la PCP. Le même déficit de libération a été remarqué sur des synaptosomes obtenus à partir du cpf des animaux traités à la phenryclidine. Cette observation indique que la PCP induit une modification plastique adaptative du mécanisme qui contrôle la libération du glutamate dans les terminaisons synaptiques. Nous avons découvert que cette modification implique la sous-régulation d'un NMDAR présynaptique, qui serait doué d'un rôle d'autorécepteur stimulateur de la libération du glutamate. Grâce à des tests comportementaux conduits en parallèle et réalisés pour évaluer la fonctionnalité du cpf, nous avons observé chez les souris traitées à la PCP une flexibilité comportementale réduite lors d'un test de discrimination de stimuli visuels/tactiles. Le déficit cognitif était encore présent 4 jours après la dernière administration de PCP. La technique de l'autoradiographie quantitative du [14C]2-deoxyglucose a permis d'associer ce déficit à une réduction de l'activité métabolique cérébrale pendant le déroulement du test, particulièrement au niveau du cpf. Dans l'ensemble, nos résultats suggèrent que le blocage prolongé du NMDAR lors de l'administration répétée de PCP produit un déficit de libération du glutamate au niveau des terminaisons synaptiques excitatrices du cpf. Un tel déficit pourrait être provoqué par la sousrégulation d'un NMDAR présynaptique, qui aurait une fonction de stimulateur de libération; la transmission excitatrice du cpf s'en trouverait dans ce cas réduite. Ce résultat est en ligne avec l'activité métabolique et fonctionnelle réduite du cpf et l'observation de déficits cognitifs induits lors de l'administration de la PCP. ABSTRACT : Sub-chronic treatment with phencyclidine (PCP), an NMDA receptor (NMDAR) channel blocker, reproduces in rodents part of the symptomatology associated to schizophrenia in humans. Prolonged pharmacological blockade of NMDAR with PCP mimics NMDAR hypofunction, one of the main alterations thought to take place in the brains of schizophrenics. Our study was aimed at investigating the neurochemical, metabolic and behavioral consequences of repeated PCP administration in vivo, focusing on the functioning of the prefrontal cortex (pfc), a brain region highly relevant for the cognitive deficits observed in schizophrenic patients. Rats or mice received a daily administration of either PCP (5 mg/kg) or saline for 7 or 14 days. At least 24 hours after the last treatment the animals were sacrificed. Acute slices of the pfc were quickly prepared and challenged with high KCl to induce synaptic glutamate release. Pfc slices from PCP-treated animals released significantly less glutamate than slices from salinetreated animals. The deficit persisted 72 hours after the end of the treatment, while it was not observed in another cortical region: the primary visual cortex. Interestingly, treatment with antipsychotic drugs, either haloperidol or olanzapine, reverted the glutamate release defect induced by PCP treatment. The same release defect was observed in synaptosomes prepared from the pfc of PCP-treated animals, indicating that PCP induces a plastic adaptive change in the mechanism controlling glutamate release in the glutamatergic terminals. We discovered that such change most likely involves the down-regulation of a newly identified, pre-synaptic NMDAR with stimulatory auto-receptor function on glutamate release. In parallel sets of behavioral experiments challenging pfc function, mice sub-chronically treated with PCP displayed reduced behavioral flexibility (reversal learning) in a visual/tactile-cued discrimination task. The cognitive deficit was still evident 4 days after the last PCP administration and was associated to reduced brain metabolic activity during the performance of the behavioral task, notably in the pfc, as determined by [14C]2-deoxyglucose quantitative autoradiography. Clverall, our findings suggest that prolonged NMDAR blockade by repeated PCP administration results in a defect of glutamate release from excitatory afferents in the pfc, possibly ascribed to down-regulation of apre-synaptic stimulatory NMDAR. Deficient excitatory neurotransmission in the pfc is consistent with the reduced metabolic and functional activation of this area and the observed PCP-induced cognitive deficits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The existence of the nervous form of Chagas disease is a matter of discussion since Carlos Chagas described neurological disorders, learning and behavioural alterations in Trypanosoma cruzi-infected individuals. In most patients, the clinical manifestations of the acute phase, including neurological abnormalities, resolve spontaneously without apparent consequence in the chronic phase of infection. However, chronic Chagas disease patients have behavioural changes such as psychomotor alterations, attention and memory deficits, and depression. In the present study, we tested whether or not behavioural alterations are reproducible in experimental models. We show that C57BL/6 mice chronically infected with the Colombian strain of T. cruzi (150 days post-infection) exhibit behavioural changes as (i) depression in the tail suspension and forced swim tests, (ii) anxiety analysed by elevated plus maze and open field test sand and (iii) motor coordination in the rotarod test. These alterations are neither associated with neuromuscular disorders assessed by the grip strength test nor with sickness behaviour analysed by temperature variation sand weight loss. Therefore, chronically T. cruzi-infected mice replicate behavioural alterations (depression and anxiety) detected in Chagas disease patients opening an opportunity to study the interconnection and the physiopathology of these two biological processes in an infectious scenario.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Collagen-induced arthritis (CIA), a murine experimental disease model induced by immunization with type II collagen (CII), is used to evaluate novel therapeutic strategies for rheumatoid arthritis. Adult stem cell marker Musashi-1 (Msi1) plays an important role in regulating the maintenance and differentiation of stem/precursor cells. The objectives of this investigation were to perform a morphological study of the experimental CIA model, evaluate the effect of TNFα-blocker (etanercept) treatment, and determine the immunohistochemical expression of Msi1 protein. Methods. CIA was induced in 50 male DBA1/J mice for analyses of tissue and serum cytokine; clinical and morphological lesions in limbs; and immunohistochemical expression of Msi1. Results. Clinically, TNFα-blocker treatment attenuated CIA on day 32 after immunization (P < 0.001). Msi1 protein expression was significantly higher in joints damaged by CIA than in those with no lesions (P < 0.0001) and was related to the severity of the lesions (Spearman's rho = 0.775, P = 0.0001). Conclusions. Treatment with etanercept attenuates osteoarticular lesions in the murine CIA model. Osteoarticular expression of Msi1 protein is increased in joints with CIA-induced lesion and absent in nonlesioned joints, suggesting that this protein is expressed when the lesion is produced in order to favor tissue repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among the various work stress models, one of the most popular has been the job demands-control (JDC) model developed by Karasek (1979), which postulates that work-related strain is highest under work conditions characterized by high demands and low autonomy. The absence of social support at work further increases negative outcomes. This model, however, does not apply equally to all individuals and to all cultures. This review demonstrates how various individual characteristics, especially some personality dimensions, influence the JDC model and could thus be considered buffering or moderator factors. Moreover, we review how the cultural context impacts this model as suggested by results obtained in European, American, and Asian contexts. Yet there are almost no data from Africa or South America. More crosscultural studies including populations from these continents would be valuable for a better understanding of the impact of the cultural context on the JDC model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Intracerebral hemorrhage (ICH) is a subtype of stroke characterized by a haematoma within the brain parenchyma resulting from blood vessel rupture and with a poor outcome. In ICH, the blood entry into the brain triggers toxicity resulting in a substantial loss of neurons and an inflammatory response. At the same time, blood-brain barrier (BBB) disruption increases water content (edema) leading to growing intracranial pressure, which in turn worsens neurological outcome. Although the clinical presentation is similar in ischemic and hemorrhagic stroke, the treatment is different and the stroke type needs to be determined beforehand by imaging which delays the therapy. C-Jun N-terminal kinases (JNKs) are a family of kinases activated in response to stress stimuli and involved in several pathways such as apoptosis. Specific inhibition of JNK by a TAT-coupled peptide (XG-102) mediates strong neuroprotection in several models of ischemic stroke in rodents. Recently, we have observed that the JNK pathway is also activated in a mouse model of ICH, raising the question of the efficacy of XG-102 in this model. Method: ICH was induced in the mouse by intrastriatal injection of bacterial collagenase (0,1 U). Three hours after surgery, animals received an intravenous injection of 100 mg/kg of XG-102. The neurological outcome was assessed everyday until sacrifice using a score (from 0 to 9) based on 3 behavioral tests performed daily until sacrifice. Then, mice were sacrificed at 6 h, 24 h, 48 h, and 5d after ICH and histological studies performed. Results: The first 24 h after surgery are critical in our ICH mice model, and we have observed that XG-102 significantly improves neurological outcome at this time point (mean score: 1,8 + 1.4 for treated group versus 3,4+ 1.8 for control group, P<0.01). Analysis of the lesion volume revealed a significant decrease of the lesion area in the treated group at 48h (29+ 11mm3 in the treated group versus 39+ 5mm3 in the control group, P=0.04). XG-102 mainly inhibits the edema component of the lesion. Indeed, a significant inhibition Journal of Cerebral Blood Flow & Metabolism (2009) 29, S490-S493 & 2009 ISCBFM All rights reserved 0271-678X/09 $32.00 www.jcbfm.com of the brain swelling was observed in treated animals at 48h (14%+ 13% versus 26+ 9% in the control group, P=0.04) and 5d (_0.3%+ 4.5%versus 5.1+ 3.6%in the control group, P=0.01). Conclusions: Inhibition of the JNK pathway by XG- 102 appears to lead to several beneficial effects. We can show here a significant inhibition of the cerebral edema in the ICH model providing a further beneficial effect of the XG-102 treatment, in addition to the neuroprotection previously described in the ischemic model. This result is of interest because currently, clinical treatment for brain edema is limited. Importantly, the beneficial effects observed with XG-102 in models of both stroke types open the possibility to rapidly treat stroke patients before identifying the stroke subtype by imaging. This will save time which is precious for stroke outcome.