828 resultados para Input-output data
Resumo:
Federal Highway Administration, Office of Safety and Traffic Operations Research Development, McLean, Va.
Resumo:
On cover of v. 2: Early clinical drug evaluation units, analyses.
Resumo:
Mode of access: Internet.
Resumo:
"June 1971."
Resumo:
Includes index.
Resumo:
Includes index.
Resumo:
"November 1970."
Resumo:
"Errata sheet."
Resumo:
This paper re-examines the stability of multi-input multi-output (MIMO) control systems designed using sequential MIMO quantitative feedback theory (QFT). In order to establish the results, recursive design equations for the SISO equivalent plants employed in a sequential MIMO QFT design are established. The equations apply to sequential MIMO QFT designs in both the direct plant domain, which employs the elements of plant in the design, and the inverse plant domain, which employs the elements of the plant inverse in the design. Stability theorems that employ necessary and sufficient conditions for robust closed-loop internal stability are developed for sequential MIMO QFT designs in both domains. The theorems and design equations facilitate less conservative designs and improved design transparency.
Resumo:
Objective: An estimation of cut-off points for the diagnosis of diabetes mellitus (DM) based on individual risk factors. Methods: A subset of the 1991 Oman National Diabetes Survey is used, including all patients with a 2h post glucose load >= 200 mg/dl (278 subjects) and a control group of 286 subjects. All subjects previously diagnosed as diabetic and all subjects with missing data values were excluded. The data set was analyzed by use of the SPSS Clementine data mining system. Decision Tree Learners (C5 and CART) and a method for mining association rules (the GRI algorithm) are used. The fasting plasma glucose (FPG), age, sex, family history of diabetes and body mass index (BMI) are input risk factors (independent variables), while diabetes onset (the 2h post glucose load >= 200 mg/dl) is the output (dependent variable). All three techniques used were tested by use of crossvalidation (89.8%). Results: Rules produced for diabetes diagnosis are: A- GRI algorithm (1) FPG>=108.9 mg/dl, (2) FPG>=107.1 and age>39.5 years. B- CART decision trees: FPG >=110.7 mg/dl. C- The C5 decision tree learner: (1) FPG>=95.5 and 54, (2) FPG>=106 and 25.2 kg/m2. (3) FPG>=106 and =133 mg/dl. The three techniques produced rules which cover a significant number of cases (82%), with confidence between 74 and 100%. Conclusion: Our approach supports the suggestion that the present cut-off value of fasting plasma glucose (126 mg/dl) for the diagnosis of diabetes mellitus needs revision, and the individual risk factors such as age and BMI should be considered in defining the new cut-off value.
Resumo:
Gaussian processes provide natural non-parametric prior distributions over regression functions. In this paper we consider regression problems where there is noise on the output, and the variance of the noise depends on the inputs. If we assume that the noise is a smooth function of the inputs, then it is natural to model the noise variance using a second Gaussian process, in addition to the Gaussian process governing the noise-free output value. We show that prior uncertainty about the parameters controlling both processes can be handled and that the posterior distribution of the noise rate can be sampled from using Markov chain Monte Carlo methods. Our results on a synthetic data set give a posterior noise variance that well-approximates the true variance.
Resumo:
Data envelopment analysis (DEA) is defined based on observed units and by finding the distance of each unit to the border of estimated production possibility set (PPS). The convexity is one of the underlying assumptions of the PPS. This paper shows some difficulties of using standard DEA models in the presence of input-ratios and/or output-ratios. The paper defines a new convexity assumption when data includes a ratio variable. Then it proposes a series of modified DEA models which are capable to rectify this problem.
Resumo:
Data envelopment analysis defines the relative efficiency of a decision making unit (DMU) as the ratio of the sum of its weighted outputs to the sum of its weighted inputs allowing the DMUs to freely allocate weights to their inputs/outputs. However, this measure may not reflect a DMU's true efficiency as some inputs/outputs may not contribute reasonably to the efficiency measure. Traditionally, to overcome this problem weights restrictions have been imposed. This paper offers a new approach to this problem where DMUs operate a constant returns to scale technology in a single input multi-output context. The approach is based on introducing unobserved DMUs, created by adjusting the output levels of certain observed relatively efficient DMUs, reflecting a combination of technical information of feasible production levels and the DM's value judgments. Its main advantage is that the information conveyed by the DM is local, with reference to a specific observed DMU. The approach is illustrated on a real life application. © 2003 Elsevier B.V. All rights reserved.