968 resultados para Imaging science
Resumo:
A graduate destination survey can provide a snap shot in time of a graduates career progression and outcome. This paper will present the results of a Queensland University of Technology study exploring the employment outcomes of students who had completed a library and information science course from the Faculty of Information Technology between 2000 and 2008. Seventy-four graduates completed an online questionnaire administered in July 2009. The study found that 90% of the graduates surveyed were working and living in Queensland, with over three quarters living and working in Brisbane. Nearly 70% were working full-time, while only 1.4% indicating that they were unemployed and looking for work. Over 80% of the graduates identified themselves as working in librarianship. This study is the first step in understanding the progression and destination of QUTs library and information science graduates. It is recommended that this survey becomes an ongoing initiative so that the results can be analysed and compared over time.
Resumo:
Standardization is critical to scientists and regulators to ensure the quality and interoperability of research processes, as well as the safety and efficacy of the attendant research products. This is perhaps most evident in the case of omics science, which is enabled by a host of diverse high-throughput technologies such as genomics, proteomics, and metabolomics. But standards are of interest to (and shaped by) others far beyond the immediate realm of individual scientists, laboratories, scientific consortia, or governments that develop, apply, and regulate them. Indeed, scientific standards have consequences for the social, ethical, and legal environment in which innovative technologies are regulated, and thereby command the attention of policy makers and citizens. This article argues that standardization of omics science is both technical and social. A critical synthesis of the social science literature indicates that: (1) standardization requires a degree of flexibility to be practical at the level of scientific practice in disparate sites; (2) the manner in which standards are created, and by whom, will impact their perceived legitimacy and therefore their potential to be used; and (3) the process of standardization itself is important to establishing the legitimacy of an area of scientific research.
Resumo:
Interactive documents for use with the World Wide Web have been developed for viewing multi-dimensional radiographic and visual images of human anatomy, derived from the Visible Human Project. Emphasis has been placed on user-controlled features and selections. The purpose was to develop an interface which was independent of host operating system and browser software which would allow viewing of information by multiple users. The interfaces were implemented using HyperText Markup Language (HTML) forms, C programming language and Perl scripting language. Images were pre-processed using ANALYZE and stored on a Web server in CompuServe GIF format. Viewing options were included in the document design, such as interactive thresholding and two-dimensional slice direction. The interface is an example of what may be achieved using the World Wide Web. Key applications envisaged for such software include education, research and accessing of information through internal databases and simultaneous sharing of images by remote computers by health personnel for diagnostic purposes.
Resumo:
There is no denying that the information technology revolution of the late twentieth century has arrived. Whilst not equitably accessible for many, others hold high expectations for the contributions online activity will make to student learning outcomes. Concurrently, and not necessarily consequentially, the number of science and technology secondary school and university graduates throughout the world has declined substantially, as has their motivation and engagement with school science (OECD, 2006). The aim of this research paper is to explore one aspect of online activity, that of forum-based netspeak (Crystal, 2006), in relation to the possibilities and challenges it provides for forms of scientific learning. This paper reports findings from a study investigating student initiated netspeak in a science inspired multiliteracies (New London Group, 2000) project in one middle primary (aged 7-10 years) multi-age Australian classroom. Drawing on the theoretical description of the Five phases of enquiry proposed by Bybee (1997), an analytic framework is proffered that allows identification of student engagement, exploration, explanation, elaboration and evaluation of scientific enquiry. The findings provide insight into online forums for advancing learning in and motivation for science in the middle primary years.
Resumo:
Streptococcus pyogenes, also known as Group A Streptococcus (GAS) has been associated with a range of diseases from the mild pharyngitis and pyoderma to more severe invasive infections such as streptococcal toxic shock. GAS also causes a number of non-suppurative post-infectious diseases such as rheumatic fever, rheumatic heart disease and glomerulonephritis. The large extent of GAS disease burden necessitates the need for a prophylactic vaccine that could target the diverse GAS emm types circulating globally. Anti-GAS vaccine strategies have focused primarily on the GAS M-protein, an extracellular virulence factor anchored to GAS cell wall. As opposed to the hypervariable N-terminal region, the C-terminal portion of the protein is highly conserved among different GAS emm types and is the focus of a leading GAS vaccine candidate, J8-DT/alum. The vaccine candidate J8-DT/alum was shown to be immunogenic in mice, rabbits and the non-human primates, hamadryas baboons. Similar responses to J8-DT/alum were observed after subcutaneous and intramuscular immunization with J8-DT/alum, in mice and in rabbits. Further assessment of parameters that may influence the immunogenicity of J8-DT demonstrated that the immune responses were identical in male and female mice and the use of alum as an adjuvant in the vaccine formulation significantly increased its immunogenicity, resulting in a long-lived serum IgG response. Contrary to the previous findings, the data in this thesis indicates that a primary immunization with J8-DT/alum (50g) followed by a single boost is sufficient to generate a robust immune response in mice. As expected, the IgG response to J8- DT/alum was a Th2 type response consisting predominantly of the isotype IgG1 accompanied by lower levels of IgG2a. Intramuscular vaccination of rabbits with J8-DT/alum demonstrated that an increase in the dose of J8-DT/alum up to 500g does not have an impact on the serum IgG titers achieved. Similar to the immune response in mice, immunization with J8-DT/alum in baboons also established that a 60g dose compared to either 30g or 120g was sufficient to generate a robust immune response. Interestingly, mucosal infection of naive baboons with a M1 GAS strain did not induce a J8-specific serum IgG response. As J8-DT/alum mediated protection has been previously reported to be due to the J8- specific antibody formed, the efficacy of J8-DT antibodies was determined in vitro and in vivo. In vitro opsonization and in vivo passive transfer confirmed the protective potential of J8-DT antibodies. A reduction in the bacterial burden after challenge with a bioluminescent M49 GAS strain in mice that were passively administered J8-DT IgG established that protection due to J8-DT was mediated by antibodies. The GAS burden in infected mice was monitored using bioluminescent imaging in addition to traditional CFU assays. Bioluminescent GAS strains including the rheumatogenic M1 GAS could not be generated due to limitations with transformation of GAS, however, a M49 GAS strain was utilized during BLI. The M49 serotype is traditionally a nephritogenic serotype associated with post-streptococcal glomerulonephritis. Anti- J8-DT antibodies now have been shown to be protective against multiple GAS strains such as M49 and M1. This study evaluated the immunogenicity of J8-DT/alum in different species of experimental animals in preparation for phase I human clinical trials and provided the ground work for the development of a rapid non-invasive assay for evaluation of vaccine candidates.
Resumo:
The concept of radar was developed for the estimation of the distance (range) and velocity of a target from a receiver. The distance measurement is obtained by measuring the time taken for the transmitted signal to propagate to the target and return to the receiver. The target's velocity is determined by measuring the Doppler induced frequency shift of the returned signal caused by the rate of change of the time- delay from the target. As researchers further developed conventional radar systems it become apparent that additional information was contained in the backscattered signal and that this information could in fact be used to describe the shape of the target itself. It is due to the fact that a target can be considered to be a collection of individual point scatterers, each of which has its own velocity and time- delay. DelayDoppler parameter estimation of each of these point scatterers thus corresponds to a mapping of the target's range and cross range, thus producing an image of the target. Much research has been done in this area since the early radar imaging work of the 1960s. At present there are two main categories into which radar imaging falls. The first of these is related to the case where the backscattered signal is considered to be deterministic. The second is related to the case where the backscattered signal is of a stochastic nature. In both cases the information which describes the target's scattering function is extracted by the use of the ambiguity function, a function which correlates the backscattered signal in time and frequency with the transmitted signal. In practical situations, it is often necessary to have the transmitter and the receiver of the radar system sited at different locations. The problem in these situations is 'that a reference signal must then be present in order to calculate the ambiguity function. This causes an additional problem in that detailed phase information about the transmitted signal is then required at the receiver. It is this latter problem which has led to the investigation of radar imaging using time- frequency distributions. As will be shown in this thesis, the phase information about the transmitted signal can be extracted from the backscattered signal using time- frequency distributions. The principle aim of this thesis was in the development, and subsequent discussion into the theory of radar imaging, using time- frequency distributions. Consideration is first given to the case where the target is diffuse, ie. where the backscattered signal has temporal stationarity and a spatially white power spectral density. The complementary situation is also investigated, ie. where the target is no longer diffuse, but some degree of correlation exists between the time- frequency points. Computer simulations are presented to demonstrate the concepts and theories developed in the thesis. For the proposed radar system to be practically realisable, both the time- frequency distributions and the associated algorithms developed must be able to be implemented in a timely manner. For this reason an optical architecture is proposed. This architecture is specifically designed to obtain the required time and frequency resolution when using laser radar imaging. The complex light amplitude distributions produced by this architecture have been computer simulated using an optical compiler.
Resumo:
Science and technology are promoted as major contributors to national development. Consequently, improved science education has been placed high on the agenda of tasks to be tackled in many developing countries, although progress has often been limited. In fact there have been claims that the enormous investment in teaching science in developing countries has basically failed, with many reports of how efforts to teach science in developing countries often result in rote learning of strange concepts, mere copying of factual information, and a general lack of understanding on the part of local students. These generalisations can be applied to science education in Fiji. Muralidhar (1989) has described a situation in which upper primary and middle school students in Fiji were given little opportunity to engage in practical work; an extremely didactic form of teacher exposition was the predominant method of instruction during science lessons. He concluded that amongst other things, teachers' limited understanding, particularly of aspects of physical science, resulted in their rigid adherence to the text book or the omission of certain activities or topics. Although many of the problems associated with science education in developing countries have been documented, few attempts have been made to understand how non-Western students might better learn science. This study addresses the issue of Fiji pre-service primary teachers' understanding of a key aspect of physical science, namely, matter and how it changes, and their responses to learning experiences based on a constructivist epistemology. Initial interviews were used to probe pre-service primary teachers' understanding of this domain of science. The data were analysed to identify students' alternative and scientific conceptions. These conceptions were then used to construct Concept Profile Inventories (CPI) which allowed for qualitative comparison of the concepts of the two ethnic groups who took part in the study. This phase of the study also provided some insight into the interaction of scientific information and traditional beliefs in non-Western societies. A quantitative comparison of the groups' conceptions was conducted using a Science Concept Survey instrument developed from the CPis. These data provided considerable insight into the aspects of matter where the pre-service teachers' understanding was particularly weak. On the basis of these preliminary findings, a six-week teaching program aimed at improving the students' understanding of matter was implemented in an experimental design with a group of students. The intervention involved elements of pedagogy such as the use of analogies and concept maps which were novel to most of those who took part. At the conclusion of the teaching programme, the learning outcomes of the experimental group were compared with those of a control group taught in a more traditional manner. These outcomes were assessed quantitatively by means of pre- and post-tests and a delayed post-test, and qualitatively using an interview protocol. The students' views on the various teaching strategies used with the experimental group were also sought. The findings indicate that in the domain of matter little variation exists in the alternative conceptions held by Fijian and Indian students suggesting that cultural influences may be minimal in their construction. Furthermore, the teaching strategies implemented with the experimental group of students, although largely derived from Western research, showed considerable promise in the context of Fiji, where they appeared to be effective in improving the understanding of students from different cultural backgrounds. These outcomes may be of significance to those involved in teacher education and curriculum development in other developing countries.