998 resultados para IRON COMPOUNDS
Resumo:
Homo and heterotrinuclear acetates are unique compounds having μ3-oxo bridge and many interesting properties of such compounds are derived from this structure. Some undergraduate inorganic textbooks discuss several aspects of these compounds and we present here an undergraduate experiment for the high-yield synthesis of [Fe2MO(CH3CO2)6(H 2O)3], with M = Fe3+, Co2+ and Ni2+, as well as their characterization using infrared spectroscopy and cyclic voltametry. The proposed experiment gives the opportunity to discuss several concepts of coordination chemistry that follow the characterization techniques, such as: types of acetate coordination, reversibility of electrochemical processes, quelate and trans effects and lability.
Resumo:
The catalytic behavior of Cs-exchanged and Cs-impregnated zeolites (X and Y) was studied using the Knoevenagel condensation between glyceraldehyde acetonide and ethyl acetoacetate in order to produce the corresponding α,β-unsaturated carbonyl compound that is an important intermediate for fine chemicals. The influence of reaction temperature, type of zeolite, and basicity of the sites on the catalytic behavior of the samples was evaluated. All zeolites were active for the studied reaction. The formation of the main condensation product was favored at lower reaction temperatures. Products of further condensations were also observed especially for samples that were only dried before catalytic test.
Resumo:
An alternative for landfill leachate treatment are advanced oxidation processes by Fenton's reagent (AOP/Fenton). In this context, the aim of this paper was to evaluate, in a bench scale, the treatability of leachate pós-AOP/Fenton characterizing the supernatant and the sludge generated separately. Observed in optimal conditions, high removal efficiency of COD (76.7%), real color (76.4%) and humic substances (50%). Organic compounds were detected in the sludge (2.465 mg COD L-1) and high concentration of iron (1.757 mg L-1) as was expected. Finally, the sludge generated showed low settling hindering their separation by sedimentation (SVI = 321 mL g-1).
Resumo:
From the aerial parts of Sidastrum micranthum (A. St.-Hil.) Fryxell (Malvaceae) were isolated m-methoxy-p-hydroxy-benzaldehyde, o-hydroxy-benzoic acid, acacetin, quercetin, 7,4′-Di-O-methylisoscutellarein, genkwanin and tiliroside. These compounds were identified by data analyses of spectroscopic methods. Although acacetin and 7,4′-Di-O-methylisoscutellarein did not display relevant antibacterial activity (MIC = 256 µg/mL), they modulated the activity of antibiotics, i.e. in combination with antibiotics at 64 µg/mL (¼ MIC), a two-fold reduction in the MIC was observed for norfloxacin and ethidium bromide; regarding tetracycline and erythromycin a two-fold reduction in the MIC was observed only with 7,4′-Di-O-methylisoscutellarein.
Resumo:
A new sensitive and selective procedure for speciation of trace dissolved Fe(III) and Fe(II), using modified octadecyl silica membrane disks and determination by flame atomic absorption spectrometry was developed. A ML3 complex is formed between the ligand and Fe(III) responsible for extraction of metal ion on the disk. Various factors influencing the separation of iron were investigated and the optimized operation conditions were established. Under optimum conditions, an enrichment factor of 166 was obtained for Fe3+ ions. The calibration graph using the preconcentration system for Fe3+ was linear between 40.0 and 1000.0 μg L-1.
Resumo:
This work describes the phytochemical study of stems of Mimosa invisa (Mimosaceae) and the evaluation of the antioxidant potential of isolated compounds. Cromatografic techniques were employed to isolate salicifoliol, pinoresinol, quercetin, quercetin-3-O-rhamnopyranosyl, quercetin-3-O-arabinofuranosyl lupeol, β-amyrin, sitosterol, p-hydroxy coumaric acid, 4-hydroxy-3-methoxy benzaldehyde (vanillin), 4-hydroxy-3,5-dimethoxy benzaldehyde, 4-hydroxy-3-methoxy benzoic acid and 4',6,7- trimethoxy flavonol. The latter had been previously described but the spectrometric data shown indicated the structure required review. The antioxidant activity of the compounds was evaluated by the DPPH test and capability of NBT reduction by superoxide radicals. Quercetin glycosides showed lower antioxidant potential than quercetin and, salicifoliol was found to be more active than pinoresinol.
Resumo:
This study describes the chemical investigation of the ethyl acetate fraction obtained from the hydroethanolic extract of the xylopodium of Cochlospermum regium (Mart. & Schr.) Pilger, which has been associated with antimicrobial activity. Phytochemical investigation produced seven phenol derivatives: ellagic acid, gallic acid, dihydrokaempferol, dihydrokaempferol-3-O-β-glucopyranoside, dihydrokaempferol-3-O-β-(6"-galloyl)-glucopyranoside, pinoresinol, and excelsin. It also contained two triacylbenzenes, known as cochlospermines A and B. The hydroethanolic extract and its fractions exhibited antimicrobial activity (0.1 mg/mL) against Staphylococcus aureus and Pseudomonas aeruginosa. Gallic acid showed activity against S. aureus. Dihydrokaempferol-3-O-β-(6"-galloyl)-glucopyranoside is reported here for the first time in the literature.
Resumo:
This work examines traditional and new routes for removal of H2S and other sulfur compounds from spent sufidic caustic (SSC). SH- (hydrogenosulfide) and S2- (sulfide) ions were quantitatively oxidized at 25 ºC using H2O2, NaOCl or a spent sulfochromic mixture. SH-/S2- ions were also removed via reaction with freshly prepared iron or manganese hydroxides, or after passing the SSC through strong basic anion exchange resins (OH- form). The treated caustic solution, as well as iron/manganese hydroxides, removed H2S from diesel samples at 25 ºC. SSC treatment via strong basic anion-exchange resins produced the treated caustic solution with the highest free alkalinity.
Resumo:
This paper reports the synthesis of methanones and esters bearing different substitution patterns as spacer groups between aromatic rings. This series of compounds can be considered phenstatin analogs. Two of the newly synthesized compounds, 5a and 5c, strongly inhibited tubulin polymerization and the binding of [³H] colchicine to tubulin, suggesting that, akin to phenstatin and combretastatin A-4, they can bind to tubulin at the colchicine site.
Resumo:
This study describes the isolation and structural determination of two amides, isolated for the first time: N,4-dihydroxy-N-(2'-hydroxyethyl)-benzamide (0.019%) and N,4-dihydroxy-N-(2'-hydroxyethyl)-benzeneacetamide (0.023%). These amides, produced by the red macroalgae Bostrychia radicans, had their structures assigned by NMR spectral data and MS analyses. In addition, this chemical study led to the isolation of cholesterol, heptadecane, squalene, trans-phytol, neophytadiene, tetradecanoic and hexadecanoic acids, methyl hexadecanoate and methyl 9-octadecenoate, 4-(methoxymethyl)-phenol, 4-hydroxybenzaldehyde, methyl 4-hydroxybenzeneacetate, methyl 2-hydroxy-3-(4-hydroxyphenyl)-propanoate, hydroquinone, methyl 4-hydroxymandelate, methyl 4-hydroxybenzoate, 4-hydroxybenzeneacetic acid and (4-hydroxyphenyl)-oxo-acetaldehyde. This is the first report concerning these compounds in B. radicans, contributing by illustrating the chemical diversity within the Rhodomelaceae family.
Resumo:
A new triterpene, 1-epi-castanopsol, besides eleven known compounds: sitosterol, stigmasterol, campesterol, lupeol, lupenone, simirane B, syringaresinol, scopoletin, isofraxidin, 6,7,8-trimethoxycoumarin and harman, were isolated from the wood of Simira glaziovii. The structures of the known compounds were defined by 1D, 2D ¹H, 13C NMR spectra data analyses and comparison with literature data. The detailed spectral data analyses allowed the definition of the structure of the new 1-epi isomer of castanopsol and performance of ¹H and 13C NMR chemical shift assignments.
Resumo:
Essential oil from the leaves of Mansoa difficilis was analyzed by GC/MS. Oct-1-en-3-ol (49.65%) was the major compound, but diallyl di- and trisulfide were also present (0.85 and 0.37%, respectively), justifying the garlic-like odor of the crushed leaves. The hexane and methanol extracts of the leaves and stems afforded as main constituents a mixture of linear hydrocarbons, spinasterol, stigmasterol, ursolic and oleanolic acids, two apigenin derivatives and verbascoside. The hexane and methanol extracts of leaves were tested for antimicrobial activity against ten microorganisms. The hexane extract was active against both Psedomonas aeruginosa and Staphylococcus aureus.
Resumo:
We extended our previous exploration of sulfur bridges as bioisosteric replacements for atoms forming the bridge between the aromatic rings of combretastatin A-4. Employing coupling reactions between 5-iodo-1,2,3-trimethoxybenzene and substituted thiols, followed by oxidation to sulfones with m-CPBA, different locations for attaching the sulfur atom to ring A through the synthesis of nine compounds were examined. Antitubulin activity was performed with electrophoretically homogenous bovine brain tubulin, and activity occurred with the 1,2,3-trimethoxy-4-[(4-methoxyphenyl)thio]benzene (12), while the other compounds were inactive. The compounds were also tested for leishmanicidal activity using promastigote forms of Leishmania braziliensis (MHOM/BR175/M2904), and the greatest activity was observed with 1,2,3-trimethoxy-4-(phenylthio)benzene (10) and 1,2,3-trimethoxy-4-[(4-methoxyphenyl) sulfinyl]benzene (15).
Resumo:
A hydrometallurgical method for the recovery of rare earth metals, cobalt, nickel, iron, and manganese from the negative electrodes of spent Ni - MH mobile phone batteries was developed. The rare earth compounds were obtained by chemical precipitation at pH 1.5, with sodium cerium sulfate (NaCe(SO4)2.H2O) and lanthanum sulfate (La2(SO4)3.H2O) as the major recovered components. Iron was recovered as Fe(OH)3 and FeO. Manganese was obtained as Mn3O4.The recovered Ni(OH)2 and Co(OH)2 were subsequently used to synthesize LiCoO2, LiNiO2 and CoO, for use as cathodes in ion-Li batteries. The anodes and recycled materials were characterized by analytical techniques.
Resumo:
The efficiency of the chemiluminescence luminol method and colorimetric DPPH and ABTS methods in evaluating the antiradical capacity of pure compounds and plant extracts with antioxidant potential is compared. In case of pure compounds, the values of parameter 'n' (number of radicals quenched per molecule of antiradical) for ascorbic acid, p-hydroquinone, catechol, quercetin, and rutin are similar when measured by colorimetric assays; however, considerably lower values of n are obtained with the luminol assay. The antiradical activity of extracts from male and female individuals of Baccharis burchelli and Baccharis crispa were determined by the luminol assay and expressed using the new Trolox® percentage (%Trolox®) parameter.