938 resultados para INDUCED OXIDATIVE DAMAGE


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The chloroethylnitrosourea (CNU) alkylating agents are commonly used for cancer chemotherapy, but their usefulness is limited by severe bone marrow toxicity that causes the cumulative depletion of all hematopoietic lineages (pancytopenia). Bone marrow CNU sensitivity is probably due to the inefficient repair of CNU-induced DNA damage; relative to other tissues, bone marrow cells express extremely low levels of the O6-methylguanine DNA methyltransferase (MGMT) protein that repairs cytotoxic O6-chloroethylguanine DNA lesions. Using a simplified recombinant retroviral vector expressing the human MGMT gene under control of the phosphoglycerate kinase promoter (PGK-MGMT) we increased the capacity of murine bone marrow-derived cells to repair CNU-induced DNA damage. Stable reconstitution of mouse bone marrow with genetically modified, MGMT-expressing hematopoietic stem cells conferred considerable resistance to the cytotoxic effects of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), a CNU commonly used for chemotherapy. Bone marrow harvested from mice transplanted with PGK-MGMT-transduced cells showed extensive in vitro BCNU resistance. Moreover, MGMT expression in mouse bone marrow conferred in vivo resistance to BCNU-induced pancytopenia and significantly reduced BCNU-induced mortality due to bone marrow hypoplasia. These data demonstrate that increased DNA alkylation repair in primitive hematopoietic stem cells confers multilineage protection from the myelosuppressive effects of BCNU and suggest a possible approach to protecting cancer patients from CNU chemotherapy-related toxicity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High levels of the p53 protein are immunohistochemically detectable in a majority of human nonmelanoma skin cancers and UVB-induced murine skin tumors. These increased protein levels are often associated with mutations in the conserved domains of the p53 gene. To investigate the timing of the p53 alterations in the process of UVB carcinogenesis, we used a well defined murine model (SKH:HR1 hairless mice) in which the time that tumors appear is predictable from the UVB exposures. The mice were subjected to a series of daily UVB exposures, either for 17 days or for 30 days, which would cause skin tumors to appear around 80 or 30 weeks, respectively. In the epidermis of these mice, we detected clusters of cells showing a strong immunostaining of the p53 protein, as measured with the CM-5 polyclonal antiserum. This cannot be explained by transient accumulation of the normal p53 protein as a physiological response to UVB-induced DNA damage. In single exposure experiments the observed transient CM-5 immunoreactivity lasted for only 3 days and was not clustered, whereas these clusters were still detectable as long as 56 days after 17 days of UVB exposure. In addition, approximately 70% of these patches reacted with the mutant-specific monoclonal antibody PAb240, whereas transiently induced p53-positive cells did not. In line with indicative human data, these experimental results in the hairless mouse model unambiguously demonstrate that constitutive p53 alterations are causally related to chronic UVB exposure and that they are a very early event in the induction of skin cancer by UVB radiation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Diamide oxidizes cellular thiols and induces oxidative stress. To isolate plant genes which may, when overexpressed, increase tolerance of plants toward oxidative damage, an in vivo diamide tolerance screening in yeasts was used. An Arabidopsis cDNA library in a yeast expression vector was used to transform a yeast strain with intact antioxidant defense. Cells from approximately 10(5) primary transformants were selected for resistance to diamide. Three Arabidopsis cDNAs which confer diamide tolerance were isolated. This drug tolerance was specific and no cross tolerance toward hydroperoxides was found. One cDNA (D3) encodes a polypeptide which has an amino-terminal J domain characteristic of a divergent family of DnaJ chaperones. Another (D18) encodes a putative dTDP-D-glucose 4,6-dehydratase. Surprisingly, the third cDNA (D22) encodes a plant homolog of gamma-glutamyltransferases. It would have been difficult to predict that the expression of those genes would lead to an improved survival under conditions of depletion of cellular thiols. Hence, we suggest that this cloning approach may be a useful contribution to the isolation of plant genes that can help to cope with oxidative stress.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trypanosomes are protozoan parasites of medical and veterinary importance. Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense infect humans, causing African sleeping sickness. However, Trypanosoma brucei brucei can only infect animals, causing the disease Nagana in cattle. Man is protected from this subspecies of trypanosomes by a toxic subtype of high density lipoproteins (HDLs) called the trypanosome lytic factor (TLF). The toxic molecule in TLF is believed to be the haptoglobin-related protein that when bound to hemoglobin kills the trypanosome via oxidative damage initiated by its peroxidase activity. The amount of lytic activity in serum varies widely between different individuals with up to a 60-fold difference in activity. In addition, an increase in the total amount of lytic activity occurs during the purification of TLF, suggesting that an inhibitor of TLF (ITLF) exists in human serum. We now show that the individual variation in trypanosome lytic activity in serum correlates to variations in the amount of ITLF. Immunoblots of ITLF probed with antiserum against haptoglobin recognize a 120-kDa protein, indicating that haptoglobin is present in partially purified ITLF. Haptoglobin involvement is further shown in that it inhibits TLF in a manner similar to ITLF. Using an anti-haptoglobin column to remove haptoglobin from ITLF, we show that the loss of haptoglobin coincides with the loss of inhibitor activity. Addition of purified haptoglobin restores inhibitor activity. This indicates that haptoglobin is the molecule responsible for inhibition and therefore causing the individual variation in serum lytic activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigated whether mutations in the p53 tumor suppressor gene alter UV sensitivity and/or repair of UV-induced DNA damage in primary human skin fibroblasts from patients with Li-Fraumeni syndrome, heterozygous for mutations in one allele of the p53 gene (p53 wt/mut) and sublines expressing only mutant p53 (p53 mut). The p53 mut cells were more resistant than the p53 wt/mut cells to UV cytotoxicity and exhibited less UV-induced apoptosis. DNA repair analysis revealed reduced removal of cyclobutane pyrimidine dimers from overall genomic DNA in vivo in p53 mut cells compared with p53 wt/mut or normal cells. However, p53 mut cells retained the ability to preferentially repair damage in the transcribed strands of expressed genes (transcription-coupled repair). These results suggest that loss of p53 function may lead to greater genomic instability by reducing the efficiency of DNA repair but that cellular resistance to DNA-damaging agents may be enhanced through elimination of apoptosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Camptothecin is a potent antineoplastic agent that interferes with the action of eukaryotic DNA topoisomerase I; the covalent enzyme-DNA intermediate is reversibly stabilized, leading to G2 arrest and cell death. We used a genetic screen to identify cellular factors, other than DNA topoisomerase I, that participate in the process of camptothecin-induced cell death. Following ethyl methanesulfonate mutagenesis of top1 delta yeast cells expressing plasmid-borne wild-type DNA topoisomerase I, six dominant suppressors of camptothecin toxicity were isolated that define a single genetic locus, sct1. Mutant SCT1 cells expressed DNA topoisomerase I protein of similar specific activity and camptothecin sensitivity to that of congenic, drug-sensitive sct1 cells, yet were resistant to camptothecin-mediated lethality. Moreover, camptothecin-treated SCT1 cells did not exhibit the G2-arrested, terminal phenotype characteristic of drug-treated wild-type cells. SCT1 cell sensitivity to other DNA-damaging agents suggests that alterations in SCT1 function suppress camptothecin-induced DNA damage produced in the presence of yeast DNA topoisomerase I.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Epidemiological evidence indicates that avoidance of smoking, increased consumption of fruits and vegetables, and control of infections will have a major effect on reducing rates of cancer. Other factors include avoidance of intense sun exposure, increases in physical activity, and reduction of alcohol consumption and possibly red meat. A substantial reduction in breast cancer is likely to require modification of sex hormone levels, and development of practical methods for doing so is a high research priority. Resolution of the potential protective roles of specific antioxidants and other constituents of fruits and vegetables deserves major attention. Mechanistic studies of carcinogenesis indicate an important role of endogenous oxidative damage to DNA that is balanced by elaborate defense and repair processes. Also key is the rate of cell division, which is influenced by hormones, growth, cytotoxicity, and inflammation, as this determines the probability of converting DNA lesions to mutations. These mechanisms may underlie many epidemiologic observations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In aerobic organisms, protection against oxidative damage involves the combined action of highly specialized antioxidant enzymes, such as superoxide dismutase (SOD) and catalase. Here we describe the isolation and characterization of another gene in the yeast Saccharomyces cerevisiae that plays a critical role in detoxification of reactive oxygen species. This gene, named ATX1, was originally isolated by its ability to suppress oxygen toxicity in yeast lacking SOD. ATX1 encodes a 8.2-kDa polypeptide exhibiting significant similarity and identity to various bacterial metal transporters. Potential ATX1 homologues were also identified in multicellular eukaryotes, including the plants Arabidopsis thaliana and Oryza sativa and the nematode Caenorhabditis elegans. In yeast cells, ATX1 evidently acts in the transport and/or partitioning of copper, and this role in copper homeostasis appears to be directly relevant to the ATX1 suppression of oxygen toxicity: ATX1 was incapable of compensating for SOD when cells were depleted of exogenous copper. Strains containing a deletion in the chromosomal ATX1 locus were generated. Loss of ATX1 function rendered both mutant and wild-type SOD strains hypersensitive toward paraquat (a generator of superoxide anion) and was also associated with an increased sensitivity toward hydrogen peroxide. Hence, ATX1 protects cells against the toxicity of both superoxide anion and hydrogen peroxide.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Riassunto I biomarcatori o “marcatori biologici” svolgono un ruolo fondamentale nel monitoraggio biologico. In questo lavoro ci siamo soffermati sullo studio di biomarcatori di effetto e di esposizione a xenobiotici ambientali. Nel primo caso abbiamo valutato i micro RNA (miRNA) da utilizzare per la diagnosi precoce del tumore al polmone in matrici di facile accesso, quale il CAE e il plasma, utilizzando il miRNA-21, oncogeno, e il miRNA-486, oncosoppressore. I risultati evidenziano una loro capacità di distinguere correttamente i soggetti con tumore polmonare dai soggetti sani, ipotizzando un loro utilizzo a scopo diagnostico. Nella seconda parte del lavoro di tesi sono stati studiati i biomarcatori di esposizione a benzene per valutare gli effetti dell’esposizione a concentrazioni ambientali su bambini residenti in città e a diverso livello di urbanizzazione. Lo studio ha evidenziato una correlazione dose-effetto fra le concentrazioni di benzene e dei suoi metaboliti urinari e un danno ossidativo a livello degli acidi nucleici. Tuttavia, le concentrazioni di benzene urinario non sono influenzate dal grado di industrializzazione, a differenza dell’S-PMA e degli indicatori di stress ossidativo (8-oxodGuo e 8-oxoGuo) che sembrano risentire sia della residenza che del momento del campionamento. Infine abbiamo ricercato possibili biomarcatori di esposizione a vinilcicloesene (VCH), sottoprodotto industriale nella polimerizzazione del 1,3-butadiene, poiché non sono ancora stati proposti BEI di riferimento nonostante i bassi valori di TLV-TWA (0.1 ppm) proposti dall’ACGIH. Nella prima fase del lavoro abbiamo studiato i meccanismi di tossicità del VCH tramite modelli in vitro, testando varie linee cellulari. I risultati evidenziano come la dose reale di VCH sia di molto inferiore a quella nominale per effetto dell’evaporazione. Inoltre, nelle linee cellulari più sensibili si sono evidenziati effetti citostatici, con alterazioni del ciclo cellulare, a differenza dell’esposizione agli epossidi del VCH, il VCD e l’1,2-VCHME, che determinano lisi cellulare con IC50 di 3 ordini di grandezza inferiori a quelli del VCH. La quantificazione dei metaboliti di I fase e di II fase del VCH nelle linee cellulari epatiche ha evidenziato concentrazioni di circa 1000 volte inferiori a quelle del VCH confermando come la sua tossicità sia principalmente dovuta alla produzione degli intermedi epossidici. La trasformazione nei metaboliti di II fase conferma inoltre l’effetto detossificante del metabolismo. La trasferibilità dei risultati ottenuti in vitro su sistemi in vivo fornirà le basi per poter identificare possibili metaboliti da proporre per il monitoraggio biologico di lavoratori esposti a VCH. PAROLE CHIAVE: biomarcatori di effetto e di esposizione, tumore al polmone, miRNA, benzene, vinilcicloesene.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coxiella burnetii is a Gram-negative obligate parasitic bacterium that causes the disease Q-fever in humans. To establish its intracellular niche, it utilizes the Icm/Dot type IVB secretion system (T4BSS) to inject protein effectors into the host cell cytoplasm. The host targets of most cognate and candidate T4BSS-translocated effectors remain obscure. We used the yeast Saccharomyces cerevisiae as a model to express and study six C. burnetii effectors, namely AnkA, AnkB, AnkF, CBU0077, CaeA and CaeB, in search for clues about their role in C. burnetii virulence. When ectopically expressed in HeLa cells, these effectors displayed distinct subcellular localizations. Accordingly, GFP fusions of these proteins produced in yeast also decorated distinct compartments, and most of them altered cell growth. CaeA was ubiquitinated both in yeast and mammalian cells and, in S. cerevisiae, accumulated at juxtanuclear quality-control compartments (JUNQs) and insoluble protein deposits (IPODs), characteristic of aggregative or misfolded proteins. AnkA, which was not ubiquitinated, accumulated exclusively at the IPOD. CaeA, but not AnkA or the other effectors, caused oxidative damage in yeast. We discuss that CaeA and AnkA behavior in yeast may rather reflect misfolding than recognition of conserved targets in the heterologous system. In contrast, CBU0077 accumulated at vacuolar membranes and abnormal ER extensions, suggesting that it interferes with vesicular traffic, whereas AnkB associated with the yeast nucleolus. Both effectors shared common localization features in HeLa and yeast cells. Our results support the idea that C. burnetii T4BSS effectors manipulate multiple host cell targets, which can be conserved in higher and lower eukaryotic cells. However, the behavior of CaeA and AnkA prompt us to conclude that heterologous protein aggregation and proteostatic stress can be a limitation to be considered when using the yeast model to assess the function of bacterial effectors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O Transtorno Bipolar (TB) tipo I é uma doença caracterizada por episódios de mania e depressão recorrentes com importante prejuízo do funcionamento global e comprometimento das funções cognitivas. Além disso, sabe-se que o número de episódios de humor patológico ao longo da vida pode também influenciar o funcionamento cognitivo destes sujeitos. Neste cenário, ocorreu a necessidade de se investigar marcadores genéticos para disfunção cognitiva no TB com o objetivo de estudar este fenômeno. Dentre os potenciais genes responsáveis por influenciar a cognição destacam-se os polimorfismos funcionais do fator neurotrófico derivado do cérebro (BDNF), da catecol-O-metiltransferase (COMT), da apolipoproteína-E (APOE) e do canal de cálcio de baixa voltagem subunidade 1-C (CACNA1C). Sabe-se, também, que no TB os marcadores de estresse oxidativo estão aumentados durante todas as fases da doença, entretanto, não é claro qual impacto destes na disfunção cognitiva de indivíduos com TB. O objetivo dessa tese foi avaliar o desempenho cognitivo de pacientes jovens com bipolaridade tipo I e sua associação com o genótipo de BDNF, COMT, APOE e CACNA1C e também com os níveis plasmáticos de oxidação da guanosina (8-OHdG) e citosina (5-Mec) durante os episódios de humor, eutimia e em controles. Para investigar essa associação foram incluídos 116 pacientes (79 em episódio de humor patológico e 37 eutímicos) com diagnóstico de TB tipo I (DSMIV-TR); 97 controles saudáveis foram submetidos à avaliação neuropsicológica e coleta de sangue para extração de DNA visando genotipagem para BDNF (rs6265), COMT (rs4680; rs165599), APOE (rs429358 e rs7412), CACNA1C (rs1006737), 8-OhdG e 5-Mec. A análise dos dados obtidos revelou que pacientes portadores do genótipo Met/Met rs4680/rs165599 do COMT apresentam comprometimento cognitivo mais grave (função executiva, fluência verbal, memória e inteligência) comparado ao genótipo Val/Met ou Val/Val durante episódios maníacos ou mistos. Na mesma direção destes resultados, verificou-se que pacientes portadores do alelo Met rs4680 do COMT apresentam comprometimento do reconhecimento de emoções faciais em episódios de mania e depressão. Nenhum efeito do COMT foi observado em controles. O alelo de risco Met do CACNA1C se associou a um pior comprometimento executivo independente dos sintomas maníacos ou depressivos no TB, porém nenhum efeito se observou nos controles. O alelo Met do BDNF rs6265 ou a presença do alelo 4 da APOE não representa um fator que identifique um grupo com desempenho cognitivo diferenciado durante as fases do TB ou em controles. Sujeitos com TB apresentaram níveis mais elevados de 8-OHdG e tais níveis eram diretamente proporcionais ao número de episódios maníacos ao longo da vida, sugerindo um papel dos episódios hiperdopaminérgicos na oxidação das bases de DNA. Concluiu-se que a genotipagem para COMT e CACNA1C em pacientes com TB pode identificar um grupo de pacientes associados a pior disfunção cognitiva durante as fases maníacas e mistas do TB. Tal dado pode ser um indicador do envolvimento do sistema dopaminérgico e dos canais de cálcio de baixa voltagem na fisiopatologia da disfunção cognitiva no TB e deve ser explorado em outros estudos

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the evolution of structural defects in AlxGa1-xN films (with x=0.0-0.6) bombarded with kilo-electron-volt heavy ions at 77 and 300 K. We use a combination of Rutherford backscattering/channeling spectrometry and cross-sectional transmission electron microscopy. Results show that an increase in Al content not only strongly enhances dynamic annealing processes but can also change the main features of the amorphization behavior. In particular, the damage buildup behavior at 300 K is essentially similar for all the AlGaN films studied. Ion-beam-produced disorder at 300 K accumulates preferentially in the crystal bulk region up to a certain saturation level (similar to50%-60% relative disorder). Bombardment at 300 K above a critical fluence results in a rapid increase in damage from the saturation level up to complete disordering, with a buried amorphous layer nucleating in the crystal bulk. However, at 77 K, the saturation effect of lattice disorder in the bulk occurs only for xgreater than or similar to0.1. Based on the analysis of these results for AlGaN and previously reported data for InGaN, we discuss physical mechanisms of the susceptibility of group-III nitrides to ion-beam-induced disordering and to the crystalline-to-amorphous phase transition. (C) 2004 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The product of the gene (ATM) mutated in the human genetic disorder ataxia-telangiectasia (A-T) is a high molecular weight, protein (similar to350 kDa) containing a C-terminal protein kinase domain and a number of other putative domains not yet functionally defined. The majority of ATM gene mutations in A-T patients are truncating, resulting in prematurely terminated products that are highly unstable. Missense mutations within the kinase domain and elsewhere in the molecule alter the stability of the protein and lead to loss of protein kinase activity. Only rarely are patients observed with two missense mutations and this gives rise to a milder disease phenotype. Evidence for a dominant interfering effect on normal ATM kinase activity has been reported in cell lines transfected with missense mutant ATM and in cell lines from some A-T heterozygotes. The dominant negative effect of mutant ATM is manifested by an enhancement of cellular radiosensitivity and may be responsible for the cancer predisposition observed in carriers of ATM missense mutations. In this review, we explore the domain structure of the ATM molecule, sites of interaction with other proteins and the consequences of specific amino acid changes on function. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chronic alcoholism leads to localized brain damage, which is prominent in superior frontal cortex but mild in motor cortex. The likelihood of developing alcohol dependence is associated with genetic markers. GABA(A) receptor expression differs between alcoholics and controls, whereas glutamate receptor differences are muted. We determined whether genotype differentiated the localized expression of glutamate and gamma-aminobutyric acid (GABA) receptors to influence the severity of alcohol-induced brain damage. Cerebrocortical tissue was obtained at autopsy from alcoholics without alcohol-related disease, alcoholics with cirrhosis, and matched controls. DRD2A, DRD2B, GABB2, EAAT2, and 5HTT genotypes did not divide alcoholic cases and controls on N-methyl-D-aspartate (NMDA) receptor parameters. In contrast, alcohol dehydrogenase (ADH)3 genotype interacted significantly with NMDA receptor efficacy and affinity in a region-specific manner. EAAT2 genotype interacted significantly with local GABAA receptor subunit mRNA expression, and GABB2 and DRD2B genotypes with p subunit isoform protein expression. Genotype may modulate amino acid transmission locally so as to mediate neuronal vulnerability. This has implications for the effectiveness of pharmacological interventions aimed at ameliorating brain damage and, possibly, dependence. (C) 2004 Elsevier Ltd. All rights reserved

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Caucasian renal transplant recipients from Queensland, Australia have the highest non-melanoma skin cancer (NMSC) risk worldwide. Although ultraviolet light (UVR) exposure is critical, genetic factors also appear important. We and others have shown that polymorphism in the glutathione S-transferases (GST) is associated with NMSC in UK recipients. However, the effect of high UVR exposure and differences in immunosuppressive regimen on these associations is unknown. In this study, we examined allelism in GSTM1, GSTM3, GSTT1 and GSTP1 in 361 Queensland renal transplant recipients. Data on squamous (SCC) and basal cell carcinoma (BCC), UVR/tobacco exposure and genotype were obtained. Associations with both NMSC risk and numbers were examined using logistic and negative binomial regression, respectively. In the total group, GSTM1 AB [P = 0.049, rate ratio (RR) = 0.23] and GSTM3 AA (P = 0.015, RR = 0.50) were associated with fewer SCC. Recipients were then stratified by prednisolone dose (less than or equal to7 versus >7 mg/day). In the low-dose group, GSTT1 null (P = 0.006, RR = 0.20) and GSTP1 Val/Val (P = 0.021, RR = 0.20) were associated with SCC numbers. In contrast, in the high-dose group, GSTM1 AB (P = 0.009, RR = 0.05), GSTM3 AB (P = 0.042, RR = 2.29) and BB (P = 0.014, RR = 5.31) and GSTP1 Val/Val (P = 0.036, RR = 2.98) were associated with SCC numbers. GSTM1 AB (P = 0.016) and GSTP1 Val/Val (P = 0.046) were also associated with fewer BCC in this group. GSTP1 associations were strongest in recipients with lower UVR/tobacco exposure. The data confirm our UK findings, suggesting that protection against UVR-induced oxidative stress is important in NMSC development in recipients, but that this effect depends on the immunosuppressant regimen.