869 resultados para Hyperbolic Boundary-Value Problem
Resumo:
The B.E. technique is applied to an interesting dynamic problem: the interaction between bridges and their abutments. Several two-dimensional cases have been tested in relation with previously published analytical results. A three-dimensional case is also shown and different considerations in relation with the accuracy of the method are described.
Resumo:
The paper presents the possibility of implementing a p-adaptive process with the B.E.M. Although the exemples show that good results can be obtained with a limited amount of storage and with the simple ideas explained above, more research is needed in order to improve the two main problems of the method, i.e.: the criteria of where to refine and until what degree. Mathematically based reasoning is still lacking and will be useful to simplify the decission making. Nevertheless the method seems promising and, we hope, opens a path for a series of research lines of maximum interest. Although the paper has dealt only with plane potential problem the extension to plane elasticity as well as to 3-D potential problem is straight-forward.
Resumo:
Modern object oriented languages like C# and JAVA enable developers to build complex application in less time. These languages are based on selecting heap allocated pass-by-reference objects for user defined data structures. This simplifies programming by automatically managing memory allocation and deallocation in conjunction with automated garbage collection. This simplification of programming comes at the cost of performance. Using pass-by-reference objects instead of lighter weight pass-by value structs can have memory impact in some cases. These costs can be critical when these application runs on limited resource environments such as mobile devices and cloud computing systems. We explore the problem by using the simple and uniform memory model to improve the performance. In this work we address this problem by providing an automated and sounds static conversion analysis which identifies if a by reference type can be safely converted to a by value type where the conversion may result in performance improvements. This works focus on C# programs. Our approach is based on a combination of syntactic and semantic checks to identify classes that are safe to convert. We evaluate the effectiveness of our work in identifying convertible types and impact of this transformation. The result shows that the transformation of reference type to value type can have substantial performance impact in practice. In our case studies we optimize the performance in Barnes-Hut program which shows total memory allocation decreased by 93% and execution time also reduced by 15%.
Resumo:
Since the epoch-making "memoir" of Saint-Venant in 1855 the torsion of prismatic and cilindrical bars has reduced to a mathematical problem: the calculation of an analytical function satisfying prescribed boundary values. For over one century, till the first applications of the F.E.M. to the problem, the only possibility of study in irregularly shaped domains was the beatiful, but limitated, theory of complex function analysis, several functional approaches and the finite difference method. Nevertheless in 1963 Jaswon published an interestingpaper which was nearly lost between the splendid F. E.M. boom. The method was extended by Rizzo to more complicated problems and definitively incorporated to the scientific community background through several lecture-notes of Cruse recently published, but widely circulated during past years. The work of several researches has shown the tremendous possibilities of the method which is today a recognized alternative to the well established F .E. procedure. In fact, the first comprehensive attempt to cover the method, has been recently published in textbook form. This paper is a contribution to the implementation of a difficulty which arises if the isoparametric elements concept is applicated to plane potential problems with sharp corners in the boundary domain. In previous works, these problems was avoided using two principal approximations: equating the fluxes round the corner or establishing a binode element (in fact, truncating the corner). The first approximation distortes heavily the solution in thecorner neighbourhood, and a great amount of element is neccesary to reduce its influence. The second is better suited but the price payed is increasing the size of the system of equations to be solved. In this paper an alternative formulation, consistent with the shape function chosen in the isoparametric representation, is presented. For ease of comprehension the formulation has been limited to the linear element. Nevertheless its extension to more refined elements is straight forward. Also a direct procedure for the assembling of the equations is presented in an attempt to reduce the in-core computer requirements.
Resumo:
Con esta tesis ”Desarrollo de una Teoría Uniforme de la Difracción para el Análisis de los Campos Electromagnéticos Dispersados y Superficiales sobre un Cilindro” hemos iniciado una nueva línea de investigación que trata de responder a la siguiente pregunta: ¿cuál es la impedancia de superficie que describe una estructura de conductor eléctrico perfecto (PEC) convexa recubierta por un material no conductor? Este tipo de estudios tienen interés hoy en día porque ayudan a predecir el campo electromagnético incidente, radiado o que se propaga sobre estructuras metálicas y localmente convexas que se encuentran recubiertas de algún material dieléctrico, o sobre estructuras metálicas con pérdidas, como por ejemplo se necesita en determinadas aplicaciones aeroespaciales, marítimas o automovilísticas. Además, desde un punto de vista teórico, la caracterización de la impedancia de superficie de una estructura PEC recubierta o no por un dieléctrico es una generalización de varias soluciones que tratan ambos tipos de problemas por separado. En esta tesis se desarrolla una teoría uniforme de la difracción (UTD) para analizar el problema canónico del campo electromagnético dispersado y superficial en un cilindro circular eléctricamente grande con una condición de contorno de impedancia (IBC) para frecuencias altas. Construir una solución basada en UTD para este problema canónico es crucial en el desarrollo de un método UTD para el caso más general de una superficie arbitrariamente convexa, mediante el uso del principio de localización de los campos electromagnéticos a altas frecuencias. Esta tesis doctoral se ha llevado a cabo a través de una serie de hitos que se enumeran a continuación, enfatizando las contribuciones a las que ha dado lugar. Inicialmente se realiza una revisión en profundidad del estado del arte de los métodos asintóticos con numerosas referencias. As í, cualquier lector novel puede llegar a conocer la historia de la óptica geométrica (GO) y la teoría geométrica de la difracción (GTD), que dieron lugar al desarrollo de la UTD. Después, se investiga ampliamente la UTD y los trabajos más importantes que pueden encontrarse en la literatura. As í, este capítulo, nos coloca en la posición de afirmar que, hasta donde nosotros conocemos, nadie ha intentado antes llevar a cabo una investigación rigurosa sobre la caracterización de la impedancia de superficie de una estructura PEC recubierta por un material dieléctrico, utilizando para ello la UTD. Primero, se desarrolla una UTD para el problema canónico de la dispersión electromagnética de un cilindro circular eléctricamente grande con una IBC uniforme, cuando es iluminado por una onda plana con incidencia oblicua a frecuencias altas. La solución a este problema canónico se construye a partir de una solución exacta mediante una expansión de autofunciones de propagación radial. Entonces, ésta se convierte en una nueva expansión de autofunciones de propagación circunferencial muy apropiada para cilindros grandes, a través de la transformación de Watson. De esta forma, la expresión del campo se reduce a una integral que se evalúa asintóticamente, para altas frecuencias, de manera uniforme. El resultado se expresa según el trazado de rayos descrito en la UTD. La solución es uniforme porque tiene la importante propiedad de mantenerse continua a lo largo de la región de transición, a ambos lados de la superficie del contorno de sombra. Fuera de la región de transición la solución se reduce al campo incidente y reflejado puramente ópticos en la región iluminada del cilindro, y al campo superficial difractado en la región de sombra. Debido a la IBC el campo dispersado contiene una componente contrapolar a causa de un acoplamiento entre las ondas TEz y TMz (donde z es el eje del cilindro). Esta componente contrapolar desaparece cuando la incidencia es normal al cilindro, y también en la región iluminada cuando la incidencia es oblicua donde el campo se reduce a la solución de GO. La solución UTD presenta una muy buena exactitud cuando se compara numéricamente con una solución de referencia exacta. A continuación, se desarrolla una IBC efectiva para el cálculo del campo electromagnético dispersado en un cilindro circular PEC recubierto por un dieléctrico e iluminado por una onda plana incidiendo oblicuamente. Para ello se derivan dos impedancias de superficie en relación directa con las ondas creeping y de superficie TM y TE que se excitan en un cilindro recubierto por un material no conductor. Las impedancias de superficie TM y TE están acopladas cuando la incidencia es oblicua, y dependen de la geometría del problema y de los números de onda. Además, se ha derivado una impedancia de superficie constante, aunque con diferente valor cuando el observador se encuentra en la zona iluminada o en la zona de sombra. Después, se presenta una solución UTD para el cálculo de la dispersión de una onda plana con incidencia oblicua sobre un cilindro eléctricamente grande y convexo, mediante la generalización del problema canónico correspondiente al cilindro circular. La solución asintótica es uniforme porque se mantiene continua a lo largo de la región de transición, en las inmediaciones del contorno de sombra, y se reduce a la solución de rayos ópticos en la zona iluminada y a la contribución de las ondas de superficie dentro de la zona de sombra, lejos de la región de transición. Cuando se usa cualquier material no conductor se excita una componente contrapolar que tiende a desaparecer cuando la incidencia es normal al cilindro y en la región iluminada. Se discuten ampliamente las limitaciones de las fórmulas para la impedancia de superficie efectiva, y se compara la solución UTD con otras soluciones de referencia, donde se observa una muy buena concordancia. Y en tercer lugar, se presenta una aproximación para una impedancia de superficie efectiva para el cálculo de los campos superficiales en un cilindro circular conductor recubierto por un dieléctrico. Se discuten las principales diferencias que existen entre un cilindro PEC recubierto por un dieléctrico desde un punto de vista riguroso y un cilindro con una IBC. Mientras para un cilindro de impedancia se considera una impedancia de superficie constante o uniforme, para un cilindro conductor recubierto por un dieléctrico se derivan dos impedancias de superficie. Estas impedancias de superficie están asociadas a los modos de ondas creeping TM y TE excitadas en un cilindro, y dependen de la posición y de la orientación del observador y de la fuente. Con esto en mente, se deriva una solución UTD con IBC para los campos superficiales teniendo en cuenta las dependencias de la impedancia de superficie. La expansión asintótica se realiza, mediante la transformación de Watson, sobre la representación en serie de las funciones de Green correspondientes, evitando as í calcular las derivadas de orden superior de las integrales de tipo Fock, y dando lugar a una solución rápida y precisa. En los ejemplos numéricos realizados se observa una muy buena precisión cuando el cilindro y la separación entre el observador y la fuente son grandes. Esta solución, junto con el método de los momentos (MoM), se puede aplicar para el cálculo eficiente del acoplamiento mutuo de grandes arrays conformados de antenas de parches. Los métodos propuestos basados en UTD para el cálculo del campo electromagnético dispersado y superficial sobre un cilindro PEC recubierto de dieléctrico con una IBC efectiva suponen un primer paso hacia la generalización de una solución UTD para superficies metálicas convexas arbitrarias cubiertas por un material no conductor e iluminadas por una fuente electromagnética arbitraria. ABSTRACT With this thesis ”Development of a Uniform Theory of Diffraction for Scattered and Surface Electromagnetic Field Analysis on a Cylinder” we have initiated a line of investigation whose goal is to answer the following question: what is the surface impedance which describes a perfect electric conductor (PEC) convex structure covered by a material coating? These studies are of current and future interest for predicting the electromagnetic (EM) fields incident, radiating or propagating on locally smooth convex parts of highly metallic structures with a material coating, or by a lossy metallic surfaces, as for example in aerospace, maritime and automotive applications. Moreover, from a theoretical point of view, the surface impedance characterization of PEC surfaces with or without a material coating represents a generalization of independent solutions for both type of problems. A uniform geometrical theory of diffraction (UTD) is developed in this thesis for analyzing the canonical problem of EM scattered and surface field by an electrically large circular cylinder with an impedance boundary condition (IBC) in the high frequency regime, by means of a surface impedance characterization. The construction of a UTD solution for this canonical problem is crucial for the development of the corresponding UTD solution for the more general case of an arbitrary smooth convex surface, via the principle of the localization of high frequency EM fields. The development of the present doctoral thesis has been carried out through a series of landmarks that are enumerated as follows, emphasizing the main contributions that this work has given rise to. Initially, a profound revision is made in the state of art of asymptotic methods where numerous references are given. Thus, any reader may know the history of geometrical optics (GO) and geometrical theory of diffraction (GTD), which led to the development of UTD. Then, the UTD is deeply investigated and the main studies which are found in the literature are shown. This chapter situates us in the position to state that, as far as we know, nobody has attempted before to perform a rigorous research about the surface impedance characterization for material-coated PEC convex structures via UTD. First, a UTD solution is developed for the canonical problem of the EM scattering by an electrically large circular cylinder with a uniform IBC, when it is illuminated by an obliquely incident high frequency plane wave. A solution to this canonical problem is first constructed in terms of an exact formulation involving a radially propagating eigenfunction expansion. The latter is converted into a circumferentially propagating eigenfunction expansion suited for large cylinders, via the Watson transformation, which is expressed as an integral that is subsequently evaluated asymptotically, for high frequencies, in a uniform manner. The resulting solution is then expressed in the desired UTD ray form. This solution is uniform in the sense that it has the important property that it remains continuous across the transition region on either side of the surface shadow boundary. Outside the shadow boundary transition region it recovers the purely ray optical incident and reflected ray fields on the deep lit side of the shadow boundary and to the modal surface diffracted ray fields on the deep shadow side. The scattered field is seen to have a cross-polarized component due to the coupling between the TEz and TMz waves (where z is the cylinder axis) resulting from the IBC. Such cross-polarization vanishes for normal incidence on the cylinder, and also in the deep lit region for oblique incidence where it properly reduces to the GO or ray optical solution. This UTD solution is shown to be very accurate by a numerical comparison with an exact reference solution. Then, an effective IBC is developed for the EM scattered field on a coated PEC circular cylinder illuminated by an obliquely incident plane wave. Two surface impedances are derived in a direct relation with the TM and TE surface and creeping wave modes excited on a coated cylinder. The TM and TE surface impedances are coupled at oblique incidence, and depend on the geometry of the problem and the wave numbers. Nevertheless, a constant surface impedance is found, although with a different value when the observation point lays in the lit or in the shadow region. Then, a UTD solution for the scattering of an obliquely incident plane wave on an electrically large smooth convex coated PEC cylinder is introduced, via a generalization of the canonical circular cylinder problem. The asymptotic solution is uniform because it remains continuous across the transition region, in the vicinity of the shadow boundary, and it recovers the ray optical solution in the deep lit region and the creeping wave formulation within the deep shadow region. When a coating is present a cross-polar field term is excited, which vanishes at normal incidence and in the deep lit region. The limitations of the effective surface impedance formulas are discussed, and the UTD solution is compared with some reference solutions where a very good agreement is met. And in third place, an effective surface impedance approach is introduced for determining surface fields on an electrically large coated metallic circular cylinder. Differences in analysis of rigorouslytreated coated metallic cylinders and cylinders with an IBC are discussed. While for the impedance cylinder case a single constant or uniform surface impedance is considered, for the coated metallic cylinder case two surface impedances are derived. These are associated with the TM and TE creeping wave modes excited on a cylinder and depend on observation and source positions and orientations. With this in mind, a UTD based method with IBC is derived for the surface fields by taking into account the surface impedance variation. The asymptotic expansion is performed, via the Watson transformation, over the appropriate series representation of the Green’s functions, thus avoiding higher-order derivatives of Fock-type integrals, and yielding a fast and an accurate solution. Numerical examples reveal a very good accuracy for large cylinders when the separation between the observation and the source point is large. Thus, this solution could be efficiently applied in mutual coupling analysis, along with the method of moments (MoM), of large conformal microstrip array antennas. The proposed UTD methods for scattered and surface EM field analysis on a coated PEC cylinder with an effective IBC are considered the first steps toward the generalization of a UTD solution for large arbitrarily convex smooth metallic surfaces covered by a material coating and illuminated by an arbitrary EM source.
Resumo:
Dynamic soil-structure interaction has been for a long time one of the most fascinating areas for the engineering profession. The building of large alternating machines and their effects on surrounding structures as well as on their own functional behavior, provided the initial impetus; a large amount of experimental research was done,and the results of the Russian and German groups were especially worthwhile. Analytical results by Reissner and Sehkter were reexamined by Quinlan, Sung, et. al., and finally Veletsos presented the first set of reliable results. Since then, the modeling of the homogeneous, elastic halfspace as a equivalent set of springs and dashpots has become an everyday tool in soil engineering practice, especially after the appearance of the fast Fourier transportation algorithm, which makes possible the treatment of the frequency-dependent characteristics of the equivalent elements in a unified fashion with the general method of analysis of the structure. Extensions to the viscoelastic case, as well as to embedded foundations and complicated geometries, have been presented by various authors. In general, they used the finite element method with the well known problems of geometric truncations and the subsequent use of absorbing boundaries. The properties of boundary integral equation methods are, in our opinion, specially well suited to this problem, and several of the previous results have confirmed our opinion. In what follows we present the general features related to steady-state elastodynamics and a series of results showing the splendid results that the BIEM provided. Especially interesting are the outputs obtained through the use of the so-called singular elements, whose description is incorporated at the end of the paper. The reduction in time spent by the computer and the small number of elements needed to simulate realistically the global properties of the halfspace make this procedure one of the most interesting applications of the BIEM.
Resumo:
A UTD solution is developed for describing the scattering by a circular cylinder with an impedance boundary condition (IBC), when it is illuminated by an obliquely incident electromagnetic (EM) plane wave. The solution to this canonical problem will be crucial for the construction of a more general UTD solution valid for an arbitrary smooth convex surface with an IBC, when it is illuminated by an arbitrary EM ray optical field. The canonical solution is uniformly valid across the surface shadow boundary that is tangent to the surface at grazing incidence. This canonical solution contains cross polarized terms in the scattered fields, which arise from a coupling of the TEz and TMz waves at the impedance boundary on the cylinder. Here, z is the cylinder axis. Numerical results show very good accuracy for the simpler and efficient UTD solution, when compared to exact but very slowly convergent eigenfunction solution.
Resumo:
Highly-textured, rolled AZ31 sheet material shows a significant drop in the plastic anisotropy (r-value; r=εw/εt) in tension between 25°C and 200°C. This behavior was initially explained as a result of the increased activity of non-basal slip with increased temperature. Other authors suggested, however, that the mechanism resp onsible for this phenomenon was the activation of grain boundary sliding (GBS). Here, in-situ ten sile tests have been carried out in an SEM at various temperatures in order to obtain further evi dence of the role of GBS during moderate to high temperature deformation of Mg alloys, which remains highly controversial.
Resumo:
After the extensive research on the capabilities of the Boundary Integral Equation Method produced during the past years the versatility of its applications has been well founded. Maybe the years to come will see the in-depth analysis of several conflictive points, for example, adaptive integration, solution of the system of equations, etc. This line is clear in academic research. In this paper we comment on the incidence of the manner of imposing the boundary conditions in 3-D coupled problems. Here the effects are particularly magnified: in the first place by the simple model used (constant elements) and secondly by the process of solution, i.e. first a potential problem is solved and then the results are used as data for an elasticity problem. The errors add to both processes and small disturbances, unimportant in separated problems, can produce serious errors in the final results. The specific problem we have chosen is especially interesting. Although more general cases (i.e. transient)can be treated, here the domain integrals can be converted into boundary ones and the influence of the manner in which boundary conditions are applied will reflect the whole importance of the problem.
Resumo:
Esta tesis estudia las similitudes y diferencias entre los flujos turbulentos de pared de tipo externo e interno, en régimen incompresible, y a números de Reynolds moderada¬mente altos. Para ello consideramos tanto simulaciones numéricas como experimentos de capas límites con gradiente de presiones nulo y de flujos de canal, ambos a números de Reynolds en el rango δ+ ~ 500 - 2000. Estos flujos de cortadura son objeto de numerosas investigaciones debido a la gran importancia que tienen tanto a nivel tecnológico como a nivel de física fundamental. No obstante, todavía existen muchos interrogantes sobre aspectos básicos tales como la universalidad de los perfiles medios y de fluctuación de las velocidades o de la presión, tanto en la zona cercana a la pared como en la zona logarítmica, el escalado y el efecto del número de Reynolds, o las diferencias entre los flujos internos y externos en la zona exterior. En éste estudio hemos utilizado simulaciones numéricas ya existentes de canales y capas límites a números de Reynolds δ+ ~ 2000 y δ+ ~ 700, respectivamente. Para poder comparar ambos flujos a igual número de Reynolds hemos realizado una nueva simulación directa de capa límite en el rango δ+ ~ 1000-2000. Los resultados de la misma son presentados y analizados en detalle. Los datos sin postprocesar y las estadísticas ya postprocesadas están públicamente disponibles en nuestro sitio web.162 El análisis de las estadísticas usando un único punto confirma la existencia de perfiles logarítmicos para las fluctuaciones de la velocidad transversal w'2+ y de la presión p'2+ en ambos tipos de flujos, pero no para la velocidad normal v'2+ o la velocidad longitudinal u'2+. Para aceptar o rechazar la existencia de un rango logarítmico en u'2+ se requieren números de Reynolds más altos que los considerados en éste trabajo. Una de las conse¬cuencias más importantes de poseer tales perfiles es que el valor máximo de la intensidad, que se alcanza cerca de la pared, depende explícitamente del número de Reynolds. Esto ha sido confirmado tras analizar un gran número de datos experimentales y numéricos, cor¬roborando que el máximo de u'2+, p/2+, y w'2+ aumenta proporcionalmente con el log(δ+). Por otro lado, éste máximo es más intenso en los flujos externos que en los internos. La máxima diferencia ocurre en torno a y/δ ~ 0.3-0.5, siendo esta altura prácticamente independiente del número de Reynolds considerado. Estas diferencias se originan como consecuencia del carácter intermitente de las capas límites, que es inexistente en los flujos internos. La estructura de las fluctuaciones de velocidad y de presión, junto con la de los esfuer¬zos de Reynolds, se han investigado por medio de correlaciones espaciales tridimensionales considerando dos puntos de medida. Hemos obtenido que el tamaño de las mismas es gen¬eralmente mayor en canales que en capas límites, especialmente en el caso de la correlación longitudinal Cuu en la dirección del flujo. Para esta correlación se demuestra que las es¬tructuras débilmente correladas presentan longitudes de hasta 0(75), en el caso de capas límites, y de hasta 0(185) en el caso de canales. Estas longitudes se obtienen respecti-vamente en la zona logarítmica y en la zona exterior. Las longitudes correspondientes en la dirección transversal son significativamente menores en ambos flujos, 0(5 — 25). La organización espacial de las correlaciones es compatible con la de una pareja de rollos casi paralelos con dimensiones que escalan en unidades exteriores. Esta organización se mantiene al menos hasta y ~ 0.65, altura a la cual las capas límites comienzan a organi¬zarse en rollos transversales. Este comportamiento es sin embargo más débil en canales, pudiéndose observar parcialmente a partir de y ~ 0.85. Para estudiar si estas estructuras están onduladas a lo largo de la dirección transver¬sal, hemos calculado las correlaciones condicionadas a eventos intensos de la velocidad transversal w'. Estas correlaciones revelan que la ondulación de la velocidad longitudinal aumenta conforme nos alejamos de la pared, sugiriendo que las estructuras están más alineadas en la zona cercana a la pared que en la zona lejana a ella. El por qué de esta ondulación se encuentra posiblemente en la configuración a lo largo de diagonales que presenta w'. Estas estructuras no sólo están onduladas, sino que también están inclinadas respecto a la pared con ángulos que dependen de la variable considerada, de la altura, y de el contorno de correlación seleccionado. Por encima de la zona tampón e independien¬temente del número de Reynolds y tipo de flujo, Cuu presenta una inclinación máxima de unos 10°, las correlaciones Cvv y Cm son esencialmente verticales, y Cww está inclinada a unos 35°. Summary This thesis studies the similitudes and differences between external and internal in¬compressible wall-bounded turbulent flows at moderately-high Reynolds numbers. We consider numerical and experimental zero-pressure-gradient boundary layers and chan¬nels in the range of δ+ ~ 500 — 2000. These shear flows are subjects of intensive research because of their technological importance and fundamental physical interest. However, there are still open questions regarding basic aspects such as the universality of the mean and fluctuating velocity and pressure profiles at the near-wall and logarithmic regions, their scaling and the effect of the Reynolds numbers, or the differences between internal and external flows at the outer layer, to name but a few. For this study, we made use of available direct numerical simulations of channel and boundary layers reaching δ+ ~ 2000 and δ+ ~ 700, respectively. To fill the gap in the Reynolds number, a new boundary layer simulation in the range δ+ ~ 1000-2000 is presented and discussed. The original raw data and the post-processed statistics are publicly available on our website.162 The analysis of the one-point statistic confirms the existence of logarithmic profiles for the spanwise w'2+ and pressure p'2+ fluctuations for both type of flows, but not for the wall-normal v'2+ or the streamwise u'2+ velocities. To accept or reject the existence of a logarithmic range in u'2+ requires higher Reynolds numbers than the ones considered in this work. An important consequence of having such profiles is that the maximum value of the intensities, reached near the wall, depends on the Reynolds number. This was confirmed after surveying a wide number of experimental and numerical datasets, corrob¬orating that the maximum of ul2+, p'2+, and w'2+ increases proportionally to log(δ+). On the other hand, that maximum is more intense in external flows than in internal ones, differing the most around y/δ ~ 0.3-0.5, and essentially independent of the Reynolds number. We discuss that those differences are originated as a consequence of the inter¬mittent character of boundary layers that is absent in internal flows. The structure of the velocity and pressure fluctuations, together with those of the Reynolds shear stress, were investigated using three-dimensional two-point spatial correlations. We find that the correlations extend over longer distances in channels than in boundary layers, especially in the case of the streamwise correlation Cuu in the flow direc-tion. For weakly correlated structures, the maximum streamwise length of Cuu is O(78) for boundary layers and O(188) for channels, attained at the logarithmic and outer regions respectively. The corresponding lengths for the transverse velocities and for the pressure are shorter, 0(8 — 28), and of the same order for both flows. The spatial organization of the velocity correlations is shown to be consistent with a pair of quasi-streamwise rollers that scales in outer units. That organization is observed until y ~ 0.68, from which boundary layers start to organize into spanwise rollers. This effect is weaker in channels, and it appears at y ~ 0.88. We present correlations conditioned to intense events of the transversal velocity, w', to study if these structures meander along the spanwise direction. The results indicate that the streamwise velocity streaks increase their meandering proportionally to the distance to the wall, suggesting that the structures are more aligned close to the wall than far from it. The reason behind this meandering is probably due to the characteristic organization along diagonals of w'. These structures not only meander along the spanwise direction, but they are also inclined to the wall at angles that depend on the distance from the wall, on the variable being considered, and on the correlation level used to define them. Above the buffer layer and independent of the Reynolds numbers and type of flow, the maximum inclination of Cuu is about 10°, Cvv and Cpp are roughly vertical, and Cww is inclined by 35°.
Resumo:
Two different methods of analysis of plate bending, FEM and BM are discussed in this paper. The plate behaviour is assumed to be represented by using the linear thin plate theory where the Poisson-Kirchoff assumption holds. The BM based in a weighted mean square error technique produced good results for the problem of plate bending. The computational effort demanded in the BM is smaller than the one needed in a FEM analysis for the same level of accuracy. The general application of the FEM cannot be matched by the BM. Particularly, different types of geometry (plates of arbitrary geometry) need a similar but not identical treatment in the BM. However, this loss of generality is counterbalanced by the computational efficiency gained in the BM in the solution achievement
Resumo:
En este proyecto se trata la simulación numérica de un fenómeno dinámico, basado en el comportamiento de una onda transmitida a lo largo de una cuerda elástica de un instrumento musical, cuyos extremos se encuentran anclados. El fenómeno físico, se desarrolla utilizando una ecuación en derivadas parciales hiperbólicas con variables espacial y temporal, acompañada por unas condiciones de contorno tipo Dirichlet en los extremos y por más condiciones iniciales que dan comienzo al proceso. Posteriormente se han generado algoritmos para el método numérico empleado (Diferencias finitas centrales y progresivas) y la programación del problema aproximado con su consistencia, estabilidad y convergencia, obteniéndose unos resultados acordes con la solución analítica del problema matemático. La programación y salida de resultados se ha realizado con Visual Studio 8.0. y la programación de objetos con Visual Basic .Net In this project the topic is the numerical simulation of a dynamic phenomenon, based on the behavior of a transmitted wave along an elastic string of a musical instrument, whose ends are anchored. The physical phenomenon is developed using a hyperbolic partial differential equation with spatial and temporal variables, accompanied by a Dirichlet boundary conditions at the ends and more initial conditions that start the process. Subsequently generated algorithms for the numerical method used (central and forward finite differences) and the programming of the approximate problem with consistency, stability and convergence, yielding results in line with the analytical solution of the mathematical problem. Programming and output results has been made with Visual Studio 8.0. and object programming with Visual Basic. Net
Resumo:
We consider a simplified system of a growing colony of cells described as a free boundary problem. The system consists of two hyperbolic equations of first order coupled to an ODE to describe the behavior of the boundary. The system for cell populations includes non-local terms of integral type in the coefficients. By introducing a comparison with solutions of an ODE's system, we show that there exists a unique homogeneous steady state which is globally asymptotically stable for a range of parameters under the assumption of radially symmetric initial data.
Resumo:
In this paper some aspects of the use of non-reflecting boundaries in dynamic problems, analyzed in time domain, are considered. Current trends for treating the above mentioned problems are summarized with a particular emphasis on the use of numerical techniques, such as Boundary Element Method (BEM) or mixed and hybrid formulations, Finite Element Method (FEM) plus BEM. As an alternative to these methods, an easy time domain boundary condition, obtained from the well known consistent transmitting boundary developed by Waas for frequency domain analysis, can be applied to represent the reactions of the unbounded soil on the interest zone. The behaviour of this proposed boundary condition is studied when waves of different frequency to the one used for its obtention are acting on the physical edge of the model. As an application example,an analysis is made of the soil-structure interaction of a rigid strip foundation on a horizontal non-linear elastic layer on bed rock. The results obtained suggest the need of time domain solutions for this type of problem
Resumo:
La presente tesis es un estudio analítico y numérico del electrospray. En la configuración más sencilla, un caudal constante del líquido a atomizar, que debe tener una cierta conductividad eléctrica, se inyecta en un medio dieléctrico (un gas u otro líquido inmiscible con el primero) a través de un tubo capilar metálico. Entre este tubo y un electrodo lejano se aplica un voltaje continuo que origina un campo eléctrico en el líquido conductor y en el espacio que lo rodea. El campo eléctrico induce una corriente eléctrica en el líquido, que acumula carga en su superficie, y da lugar a un esfuerzo eléctrico sobre la superficie, que tiende a alargarla en la dirección del campo eléctrico. El líquido forma un menisco en el extremo del tubo capilar cuando el campo eléctrico es suficientemente intenso y el caudal suficientemente pequeño. Las variaciones de presión y los esfuerzos viscosos asociados al movimiento del líquido son despreciables en la mayor parte de este menisco, siendo dominantes los esfuerzos eléctrico y de tensión superficial que actúan sobre la superficie del líquido. En el modo de funcionamiento llamado de conochorro, el balance de estos esfuerzos hace que el menisco adopte una forma cónica (el cono de Taylor) en una región intermedia entre el extremo del tubo y la punta del menisco. La velocidad del líquido aumenta al acercarse al vértice del cono, lo cual propicia que las variaciones de la presión en el líquido generadas por la inercia o por la viscosidad entren en juego, desequilibrando el balance de esfuerzos mencionado antes. Como consecuencia, del vértice del cono sale un delgado chorro de líquido, que transporta la carga eléctrica que se acumula en la superficie. La acción del campo eléctrico tangente a la superficie sobre esta carga origina una tracción eléctrica que tiende a alargar el chorro. Esta tracción no es relevante en el menisco, donde el campo eléctrico tangente a la superficie es muy pequeño, pero se hace importante en el chorro, donde es la causa del movimiento del líquido. Lejos del cono, el chorro puede o bien desarrollar una inestabilidad asimétrica que lo transforma en una espiral (whipping) o bien romperse en un spray de gotas prácticamente monodispersas cargadas eléctricamente. La corriente eléctrica transportada por el líquido es la suma de la corriente de conducción en el interior del líquido y la corriente debida a la convección de la carga acumulada en su superficie. La primera domina en el menisco y la segunda en el chorro lejano, mientras que las dos son comparables en una región intermedia de transferencia de corriente situada al comienzo del chorro aunque aguas abajo de la región de transición cono-chorro, en la que el menisco deja de ser un cono de Taylor. Para un campo exterior dado, la acumulación de carga eléctrica en la superficie del líquido reduce el campo eléctrico en el interior del mismo, que llega a anularse cuando la carga alcanza un estado final de equilibrio. El tiempo característico de este proceso es el tiempo de relajación dieléctrica, que es una propiedad del líquido. Cuando el tiempo de residencia del líquido en la región de transición cono-chorro (o en otra región del campo fluido) es grande frente al tiempo de relajación dieléctrica, la carga superficial sigue una sucesión de estados de equilibrio y apantalla al líquido del campo exterior. Cuando esta condición deja de cumplirse, aparecen efectos de relajación de carga, que se traducen en que el campo exterior penetra en el líquido, a no ser que su constante dieléctrica sea muy alta, en cuyo caso el campo inducido por la carga de polarización evita la entrada del campo exterior en el menisco y en una cierta región del chorro. La carga eléctrica en equilibrio en la superficie de un menisco cónico intensifica el campo eléctrico y determina su variación espacial hasta distancias aguas abajo del menisco del orden de su tamaño. Este campo, calculado por Taylor, es independiente del voltaje aplicado, por lo que las condiciones locales del flujo y el valor de la corriente eléctrica son también independientes del voltaje en tanto los tamaños de las regiones que determinan estas propiedades sean pequeños frente al tamaño del menisco. Los resultados experimentales publicados en la literatura muestran que existe un caudal mínimo para el que el modo cono-chorro que acabamos de describir deja de existir. El valor medio y la desviación típica de la distribución de tamaños de las gotas generadas por un electrospray son mínimos cuando se opera cerca del caudal mínimo. A pesar de que los mecanismos responsables del caudal mínimo han sido muy estudiados, no hay aún una teoría completa del mismo, si bien su existencia parece estar ligada a la aparición de efectos de relajación de carga en la región de transición cono-chorro. En esta tesis, se presentan estimaciones de orden de magnitud, algunas existentes y otras nuevas, que muestran los balances dominantes responsables de las distintas regiones de la estructura asintótica de la solución en varios casos de interés. Cuando la inercia del líquido juega un papel en la transición cono-chorro, los resultados muestran que la región de transferencia de corriente, donde la mayor parte de la corriente pasa a la superficie, está en el chorro aguas abajo de la región de transición cono-chorro. Los efectos de relajación de carga aparecen de forma simultánea en el chorro y la región de transición cuando el caudal se disminuye hasta valores de un cierto orden. Para caudales aún menores, los efectos de relajación de carga se notan en el menisco, en una región grande comparada con la de transición cono-chorro. Cuando el efecto de las fuerzas de viscosidad es dominante en la región de transición, la región de transferencia de corriente está en el chorro pero muy próxima a la región de transición cono-chorro. Al ir disminuyendo el caudal, los efectos de relajación de carga aparecen progresivamente en el chorro, en la región de transición y por último en el menisco. Cuando el caudal es mucho mayor que el mínimo del modo cono-chorro, el menisco deja de ser cónico. El campo eléctrico debido al voltaje aplicado domina en la región de transferencia de corriente, y tanto la corriente eléctrica como el tamaño de las diferentes regiones del problema pasan a depender del voltaje aplicado. Como resultado de esta dependencia, el plano caudal-voltaje se divide en diferentes regiones que se analizan separadamente. Para caudales suficientemente grandes, la inercia del líquido termina dominando frente a las fuerzas de la viscosidad. Estos resultados teóricos se han validado con simulaciones numéricas. Para ello se ha formulado un modelo simplificado del flujo, el campo eléctrico y el transporte de carga en el menisco y el chorro del electrospray. El movimiento del líquido se supone casi unidireccional y se describe usando la aproximación de Cosserat para un chorro esbelto. Esta aproximación, ampliamente usada en la literatura, permite simular con relativa facilidad múltiples casos y cubrir amplios rangos de valores de los parámetros reteniendo los efectos de la viscosidad y la inercia del líquido. Los campos eléctricos dentro y fuera del liquido están acoplados y se calculan sin simplificación alguna usando un método de elementos de contorno. La solución estacionaria del problema se calcula mediante un método iterativo. Para explorar el espacio de los parámetros, se comienza calculando una solución para valores fijos de las propiedades del líquido, el voltaje aplicado y el caudal. A continuación, se usa un método de continuación que permite delinear la frontera del dominio de existencia del modo cono-chorro, donde el método iterativo deja de converger. Cuando el efecto de la inercia del líquido domina en la región de transición cono-chorro, el caudal mínimo para el cual el método iterativo deja de converger es del orden del valor estimado del caudal para el que comienza a haber efectos de relajación de carga en el chorro y el cono. Aunque las simulaciones no convergen por debajo de dicho caudal, el valor de la corriente eléctrica para valores del caudal ligeramente mayores parece ajustarse a las estimaciones para caudales menores, reflejando un posible cambio en los balances aplicables. Por el contrario, cuando las fuerzas viscosas dominan en la región de transición, se pueden obtener soluciones estacionarias para caudales bastante menores que aquel para el que aparecen efectos de relajación de carga en la región de transición cono-chorro. Los resultados numéricos obtenidos para estos pequeños caudales se ajustan perfectamente a las estimaciones de orden de magnitud que se describen en la memoria. Por último, se incluyen como anexos dos estudios teóricos que han surgido de forma natural durante el desarrollo de la tesis. El primero hace referencia a la singularidad en el campo eléctrico que aparece en la línea de contacto entre el líquido y el tubo capilar en la mayoría de las simulaciones. Primero se estudia en qué situaciones el campo eléctrico tiende a infinito en la línea de contacto. Después, se comprueba que dicha singularidad no supone un fallo en la descripción del problema y que además no afecta a la solución lejos de la línea de contacto. También se analiza si los esfuerzos eléctricos infinitamente grandes a los que da lugar dicha singularidad pueden ser compensados por el resto de esfuerzos que actúan en la superficie del líquido. El segundo estudio busca determinar el tamaño de la región de apantallamiento en un chorro de líquido dieléctrico sin carga superficial. En esta región, el campo exterior es compensado parcialmente por el campo que induce la carga de polarización en la superficie del líquido, de forma que en el interior del líquido el campo eléctrico es mucho menor que en el exterior. Una región como ésta aparece en las estimaciones cuando los efectos de relajación de carga son importantes en la región de transferencia de corriente en el chorro. ABSTRACT This aim of this dissertation is a theoretical and numerical analysis of an electrospray. In its most simple configuration, a constant flow rate of the liquid to be atomized, which has to be an electrical conductor, is injected into a dielectric medium (a gas or another inmiscible fluid) through a metallic capillary tube. A constant voltage is applied between this tube and a distant electrode that produces an electric field in the liquid and the surrounding medium. This electric field induces an electric current in the liquid that accumulates charge at its surface and leads to electric stresses that stretch the surface in the direction of the electric field. A meniscus appears on the end of the capillary tube when the electric field is sufficiently high and the flow rate is small. Pressure variations and viscous stresses due to the motion of the liquid are negligible in most of the meniscus, where normal electric and surface tension stresses acting on the surface are dominant. In the so-called cone-jet mode, the balance of these stresses forces the surface to adopt a conical shape -Taylor cone- in a intermediate region between the end of the tube and the tip of the meniscus. When approaching the cone apex, the velocity of the liquid increases and leads to pressure variations that eventually disturb the balance of surfaces tension and electric stresses. A thin jet emerges then from the tip of the meniscus that transports the charge accumulated at its surface. The electric field tangent to the surface of the jet acts on this charge and continuously stretches the jet. This electric force is negligible in the meniscus, where the component of the electric field tangent to the surface is small, but becomes very important in the jet. Far from the cone, the jet can either develop an asymmetrical instability named “whipping”, whereby the jet winds into a spiral, or break into a spray of small, nearly monodisperse, charged droplets. The electric current transported by the liquid has two components, the conduction current in the bulk of the liquid and the convection current due to the transport of the surface charge by the flow. The first component dominates in the meniscus, the second one in the far jet, and both are comparable in a current transfer region located in the jet downstream of the cone-jet transition region where the meniscus ceases to be a Taylor cone. Given an external electric field, the charge that accumulates at the surface of the liquid reduces the electric field inside the liquid, until an equilibrium is reached in which the electric field induced by the surface charge counters the external electric field and shields the liquid from this field. The characteristic time of this process is the electric relaxation time, which is a property of the liquid. When the residence time of the liquid in the cone-jet transition region (or in other region of the flow) is greater than the electric relaxation time, the surface charge follows a succession of equilibrium states and continuously shield the liquid from the external field. When this condition is not satisfied, charge relaxation effects appear and the external field penetrates into the liquid unless the liquid permittivity is large. For very polar liquids, the field due to the polarization charge at the surface prevents the external field from entering the liquid in the cone and in certain region of the jet. The charge at the surface of a conical meniscus intensifies the electric field around the cone, determining its spatial variation up to distances downstream of the apex of the order of the size of the meniscus. This electric field, first computed by Taylor, is independent of the applied voltage. Therefore local flow characteristics and the electric current carried by the jet are also independent of the applied voltage provided the size of the regions that determine these magnitudes are small compared with the size of the meniscus. Many experiments in the literature show the existence of a minimum flow rate below which the cone-jet mode cannot be established. The mean value and the standard deviation of the electrospray droplet size distribution are minimum when the device is operated near the minimum flow rate. There is no complete explanation of the minimum flow rate, even though possible mechanisms have been extensively studied. The existence of a minimum flow rate seems to be connected with the appearance of charge relaxation effects in the transition region. In this dissertation, order of magnitude estimations are worked out that show the dominant balances in the different regions of the asymptotic structure of the solution for different conditions of interest. When the inertia of the liquid plays a role in the cone-jet transition region, the region where most of the electric current is transfered to the surface lies in the jet downstream the cone-jet transition region. When the flow rate decreases to a certain value, charge relaxation effects appear simultaneously in the jet and in the transition region. For smaller values of the flow rate, charge relaxation effects are important in a region of the meniscus larger than the transition region. When viscous forces dominate in the flow in the cone-jet transition region, the current transfer region is located in the jet immediately after the transition region. When flow rate is decreased, charge relaxation effects appears gradually, first in the jet, then in the transition region, and finally in the meniscus. When flow rate is much larger than the cone-jet mode minimum, the meniscus ceases to be a cone. The electric current and the structure of the solution begin to depend on the applied voltage. The flow rate-voltage plane splits into different regions that are analyzed separately. For sufficiently large flow rates, the effect of the inertia of the liquid always becomes greater than the effect of the viscous forces. A set of numerical simulations have been carried out in order to validate the theoretical results. A simplified model of the problem has been devised to compute the flow, the electric field and the surface charge in the meniscus and the jet of an electrospray. The motion of the liquid is assumed to be quasi-unidirectional and described by Cosserat’s approximation for a slender jet. This widely used approximation allows to easily compute multiple configurations and to explore wide ranges of values of the governing parameters, retaining the effects of the viscosity and the inertia of the liquid. Electric fields inside and outside the liquid are coupled and are computed without any simplification using a boundary elements method. The stationary solution of the problem is obtained by means of an iterative method. To explore the parameter space, a solution is first computed for a set of values of the liquid properties, the flow rate and the applied voltage, an then a continuation method is used to find the boundaries of the cone-jet mode domain of existence, where the iterative method ceases to converge. When the inertia of the liquid dominates in the cone-jet transition region, the iterative method ceases to converge for values of the flow rate for which order-of-magnitude estimates first predict charge relaxation effects to be important in the cone and the jet. The electric current computed for values of the flow rate slightly above the minimum for which convergence is obtained seems to agree with estimates worked out for lower flow rates. When viscous forces dominate in the transition region, stationary solutions can be obtained for flow rates significantly smaller than the one for which charge relaxation effects first appear in the transition region. Numerical results obtained for those small values of the flow rate agree with our order of magnitude estimates. Theoretical analyses of two issues that have arisen naturally during the thesis are summarized in two appendices. The first appendix contains a study of the singularity of the electric field that most of the simulations show at the contact line between the liquid and the capillary tube. The electric field near the contact line is analyzed to determine the ranges of geometrical configurations and liquid permittivity where a singularity appears. Further estimates show that this singularity does not entail a failure in the description of the problem and does not affect the solution far from the contact line. The infinite electric stresses that appear at the contact line can be effectively balanced by surface tension. The second appendix contains an analysis of the size and slenderness of the shielded region of a dielectric liquid in the absence of free surface charge. In this region, the external electric field is partially offset by the polarization charge so that the inner electric field is much lower than the outer one. A similar region appears in the estimates when charge relaxation effects are important in the current transfer region.