872 resultados para Hydrologic Modeling Catchment and Runoff Computations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A class of lifetime distributions which has received considerable attention in modelling and analysis of lifetime data is the class of lifetime distributions with bath-tub shaped failure rate functions because of their extensive applications. The purpose of this thesis was to introduce a new class of bivariate lifetime distributions with bath-tub shaped failure rates (BTFRFs). In this research, first we reviewed univariate lifetime distributions with bath-tub shaped failure rates, and several multivariate extensions of a univariate failure rate function. Then we introduced a new class of bivariate distributions with bath-tub shaped failure rates (hazard gradients). Specifically, the new class of bivariate lifetime distributions were developed using the method of Morgenstern’s method of defining bivariate class of distributions with given marginals. The computer simulations and numerical computations were used to investigate the properties of these distributions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Text cohesion is an important element of discourse processing. This paper presents a new approach to modeling, quantifying, and visualizing text cohesion using automated cohesion flow indices that capture semantic links among paragraphs. Cohesion flow is calculated by applying Cohesion Network Analysis, a combination of semantic distances, Latent Semantic Analysis, and Latent Dirichlet Allocation, as well as Social Network Analysis. Experiments performed on 315 timed essays indicated that cohesion flow indices are significantly correlated with human ratings of text coherence and essay quality. Visualizations of the global cohesion indices are also included to support a more facile understanding of how cohesion flow impacts coherence in terms of semantic dependencies between paragraphs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Na medida em que os produtos e os processos de criação são cada vez mais mediados digitalmente, existe uma reflexão recente acerca da relação entre as imagens e as ferramentas usadas para a sua produção. A relação natural e estreita entre a dimensão conceptual e a dimensão física abre a discussão ao nível da semântica e dos processos da projetação e manipulação das imagens, nas quais estão naturalmente incluídas as ferramentas CAD. Tendo o desenho um papel inequívoco e fundamental no exercício da projetação e da modelação 3D é pertinente perceber a relação e a articulação entre estas duas ferramentas. Reconhecendo o desenho como uma ferramenta de domínio físico capaz de expressar o pensamento que opera a transformação de concepções abstratas em concepções concretas, reconhecê-lo refletido na dimensão virtual através de um software CAD 3D não é trivial, já que este, na generalidade, é processado através de um pensamento cujo contexto é distante da materialidade. Metodologicamente, abordaremos esta questão procurando a verificação da hipótese através de uma proposta de exercício prático que procura avaliar o efeito que as imagens analógicas poderão ter sobre o reconhecimento e operatividade da ferramenta Blender num enquadramento académico. Pretende-se, pois, perceber como o desenho analógico pode integrar o processo de modelação 3D e qual a relação que mantém com quem elas opera. A articulação do desenho com as ferramentas de produção de design, especificamente CAD 3D, permitirá compreender na especialidade a articulação entre ferramentas de diferentes naturezas tanto no processo da projetação quanto na criação de artefactos visuais. Assim como poderá lançar a discussão acerca das estratégias pedagógicas de ensino do desenho e do 3D num curso de Design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the teaching practice of architecture and urbanism in Brazil, educational legislation views modeling laboratories and workshops as an indispensable component of the infrastructure required for the good functioning of any architectural course of study. Although the development of information technology at the international level has created new possibilities for digital production of architectural models, research in this field being underway since the early 1990s, it is only from 2007 onwards that such technologies started to be incorporated into the teaching activity of architecture and urbanism in Brazil, through the pioneering experience at LAPAC/FEC/UNICAMP. It is therefore a recent experiment whose challenges can be highlighted through the following examples: (i) The implementation of digital prototyping laboratories in undergraduate courses of architecture and urbanism is still rare in Brazil; (ii) As a new developing field with few references and application to undergraduate programs, it is hard to define methodological procedures suitable for the pedagogical curricula already implemented or which have already been consolidated over the years; (iii) The new digital ways for producing tridimensional models are marked with specificities which make it difficult to fit them within the existing structures of model laboratories and workshops. Considering the above, the present thesis discusses the tridimensional model as a tool which may contribute to the development of students skills in perceiving, understanding and representing tridimensional space. Analysis is made of the relation between different forms of models and the teaching of architectural project, with emphasis on the design process. Starting from the conceptualization of the word model as it is used in architecture and urbanism, an attempt is made to identify types of tridimensional models used in the process of project conception, both through the traditional, manual way of model construction as well as through the digital ones. There is also an explanation on how new technologies for digital production of models through prototyping are being introduced in undergraduate academic programs of architecture and urbanism in Brazil, as well as a review of recent academic publications in this area. Based on the paradigm of reflective practice in teaching as designed by Schön (2000), the experiment applied in the research was undertaken in the integrated workshop courses of architectural project in the undergraduate program of architecture and urbanism at Universidade Federal do Rio Grande do Norte. Along the experiment, physical modeling, geometric modeling and digital prototyping are used in distinct moments of the design process with the purpose of observing the suitability of each model to the project s phases. The procedures used in the experiments are very close to the Action Research methodology in which the main purpose is the production of theoretical knowledge by improving the practice. The process was repeated during three consecutive semesters and reflection on the results which were achieved in each cycle helped enhancing the next one. As a result, a methodological procedure is proposed which consists of the definition of the Tridimensional Model as the integrating element for the contents studied in a specific academic period or semester. The teaching of Architectural Project as it is developed along the fifth academic period of the Architecture and Urbanism undergraduate program of UFRN is taken as a reference

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces the stochastic version of the Geometric Machine Model for the modelling of sequential, alternative, parallel (synchronous) and nondeterministic computations with stochastic numbers stored in a (possibly infinite) shared memory. The programming language L(D! 1), induced by the Coherence Space of Processes D! 1, can be applied to sequential and parallel products in order to provide recursive definitions for such processes, together with a domain-theoretic semantics of the Stochastic Arithmetic. We analyze both the spacial (ordinal) recursion, related to spacial modelling of the stochastic memory, and the temporal (structural) recursion, given by the inclusion relation modelling partial objects in the ordered structure of process construction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os oceanos representam um dos maiores recursos naturais, possuindo expressivo potencial energético, podendo suprir parte da demanda energética mundial. Nas últimas décadas, alguns dispositivos destinados à conversão da energia das ondas dos oceanos em energia elétrica têm sido estudados. No presente trabalho, o princípio de funcionamento do conversor do tipo Coluna de Água Oscilante, do inglês Oscillating Water Colum, (OWC) foi analisado numericamente. As ondas incidentes na câmara hidro-pneumática da OWC, causam um movimento alternado da coluna de água no interior da câmara, o qual produz um fluxo alternado de ar que passa pela chaminé. O ar passa e aciona uma turbina a qual transmite energia para um gerador elétrico. O objetivo do presente estudo foi investigar a influência de diferentes formas geométricas da câmara sobre o fluxo resultante de ar que passa pela turbina, que influencia no desempenho do dispositivo. Para isso, geometrias diferentes para o conversor foram analisadas empregando modelos computacionais 2D e 3D. Um modelo computacional desenvolvido nos softwares GAMBIT e FLUENT foi utilizado, em que o conversor OWC foi acoplado a um tanque de ondas. O método Volume of Fluid (VOF) e a teoria de 2ª ordem Stokes foram utilizados para gerar ondas regulares, permitindo uma interação mais realista entre o conversor, água, ar e OWC. O Método dos Volumes Finitos (MVF) foi utilizado para a discretização das equações governantes. Neste trabalho o Contructal Design (baseado na Teoria Constructal) foi aplicado pela primeira vez em estudos numéricos tridimensionais de OWC para fim de encontrar uma geometria que mais favorece o desempenho do dispositivo. A função objetivo foi a maximização da vazão mássica de ar que passa através da chaminé do dispositivo OWC, analisado através do método mínimos quadrados, do inglês Root Mean Square (RMS). Os resultados indicaram que a forma geométrica da câmara influencia na transformação da energia das ondas em energia elétrica. As geometrias das câmaras analisadas que apresentaram maior área da face de incidência das ondas (sendo altura constante), apresentaram também maior desempenho do conversor OWC. A melhor geometria, entre os casos desse estudo, ofereceu um ganho no desempenho do dispositivo em torno de 30% maior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microalgae are an attractive way to produce biofuels due to the ability to accumulate lipids and very high photosynthetic yields. This article presents a review of life-cycle assessment studies of microalgae biodiesel production, including an analysis of modeling choices and assumptions. A high variation in GHG emissions (between -0.75 and 2.9 kg CO2eq MJ-1) was found and the main causes were investigated, namely modeling choices (e.g. the approach used to deal with multifunctionality), and a high parameter uncertainty in microalgae cultivation, harvesting and oil extraction processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new technical simulator for the eLISA mission, based on state space modeling techniques and developed in MATLAB. This simulator computes the coordinate and velocity over time of each body involved in the constellation, i.e. the spacecraft and its test masses, taking into account the different disturbances and actuations. This allows studying the contribution of instrumental noises and system imperfections on the residual acceleration applied on the TMs, the latter reflecting the performance of the achieved free-fall along the sensitive axis. A preliminary version of the results is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

International audience

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change and carbon (C) sequestration are a major focus of research in the twenty-first century. Globally, soils store about 300 times the amount of C that is released per annum through the burning of fossil fuels (Schulze and Freibauer 2005). Land clearing and introduction of agricultural systems have led to rapid declines in soil C reserves. The recent introduction of conservation agricultural practices has not led to a reversing of the decline in soil C content, although it has minimized the rate of decline (Baker et al. 2007; Hulugalle and Scott 2008). Lal (2003) estimated the quantum of C pools in the atmosphere, terrestrial ecosystems, and oceans and reported a “missing C” component in the world C budget. Though not proven yet, this could be linked to C losses through runoff and soil erosion (Lal 2005) and a lack of C accounting in inland water bodies (Cole et al. 2007). Land management practices to minimize the microbial respiration and soil organic C (SOC) decline such as minimum tillage or no tillage were extensively studied in the past, and the soil erosion and runoff studies monitoring those management systems focused on other nutrients such as nitrogen (N) and phosphorus (P).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stainless steel is widely used in seawater reverse osmosis units (SWRO) for both good mechanical and corrosion resistance properties. However, many corrosion failures of stainless steel in SWRO desalination units have been reported. These failures may often be attributed to un-adapted stainless steel grade selection and/or to the particular aggressive seawater conditions in "warm" regions (high ambient temperature, severe biofouling, etc.). Cathodic protection (CP) is a well-known efficient system to prevent corrosion of metallic materials in seawater. It is successfully used in the oil and gas industry to protect carbon steel structures exposed in open-sea. However, the specific service conditions of SWRO units may seriously affect the efficiency of such anti-corrosion system (high flow rates, large stainless steel surfaces affected by biofouling, confinement limiting protective cathodic current flow, etc.). Hence, CP in SWRO units should be considered with special care and modeling appears as useful tool to assess an appropriate CP design. However, there is a clear lack of CP data that could be transposed to SWRO service conditions (i.e. stainless steel, effect of biofouling, high flow rate, etc.). From this background a Join Industry Program was initiated including laboratory exposures, field measurements in a full scale SWRO desalination plant, and modeling work using PROCOR software. The present paper reviews the main parameters affecting corrosion of stainless steel alloys in seawater reverse osmosis units. CP on specific stainless steel devices was investigated in order to assess its actual efficiency for SWRO units. Severe environmental conditions were intentionally used to promote corrosion on the tested stainless steel products in order to evaluate the efficiency of CP. The study includes a modeling work aiming at predicting and designing adapted CP protection to modeled stainless steel units. An excellent correlation between modeling work and field measurements was found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the Lluta Valley, northern Chile, climate is hyperarid and vegetation is restricted to the valley floors and lowermost footslopes. Fossil tree trunks and leaves of predominantly Escallonia angustifolia, however, are abundant up to ∼15 m above the present valley floor, where they are intercalated with slope deposits, reflecting higher water levels in the past. A total of 17 samples have been radiocarbon dated, yielding ages between 38 and 15k cal a BP. The youngest ages of 15.4k cal a BP are interpreted as reflecting the beginning of river incision and lowering of the valley floor, impeding the further growth of trees at higher parts of the slopes. The most plausible scenario for this observation is intensified river incision after 15.4k cal a BP due to increased stream power and runoff from the Río Lluta headwaters in the Western Cordillera and Altiplano corresponding to the highstand of the Tauca and Central Andean Pluvial Event (CAPE) wet phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Is fairness in process and outcome a generalizable driver of police legitimacy? In many industrialized nations, studies have demonstrated that police legitimacy is largely a function of whether citizens perceive treatment as normatively fair and respectful. Questions remain whether this model holds in less-industrialized contexts, where corruption and security challenges favor instrumental preferences for effective crime control and prevention. Support for and against the normative model of legitimacy has been found in less-industrialized countries, yet few have simultaneously compared these models across multiple industrializing countries. Using a multilevel framework and data from respondents in 27 countries in sub-Saharan Africa (n~43,000), I find evidence for the presence of both instrumental and normative influences in shaping the perceptions of police legitimacy. More importantly, the internal consistency of legitimacy (defined as obligation to obey, moral alignment, and perceived legality of the police) varies considerably from country to country, suggesting that relationships between legality, morality, and obligation operate differently across contexts. Results are robust to a number of different modeling assumptions and alternative explanations. Overall, the results indicate that both fairness and effectiveness matter, not in all places, and in some cases contrary to theoretical expectations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The model presented allows simulating the pesticide concentration in fruit trees and estimating the pesticide bioconcentration factor in fruits of woody species. The model allows estimating the pesticide uptake by plants through the water transpiration stream and also the time in which maximum pesticide concentration occur in the fruits. The equation proposed presents the relationships between bioconcentration factor (BCF) and the following variables: plant water transpiration volume (Q), pesticide transpiration stream concentration factor (TSCF), pesticide stem-water partition coefficient (KWood,w), stem dry biomass (M) and pesticide dissipation rate in the soil-plant system (kEGS). The modeling started and was developed from a previous model ?Fruit Tree Model? (FTM), reported by Trapp and collaborators in 2003, to which was added the hypothesis that the pesticide degradation in the soil follows a first order kinetic equation. The model fitness was evaluated through the sensitivity analysis of the pesticide BCF values in fruits with respect to the model entry data variability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During dry periods in the Mediterranean area, the lack of water entering the soil matrix reduces organic contribu- tions to the soil. These processes lead to reduced soil fertility and soil vegetation recovery which creates a positive feedback process that can lead to desertification. Restoration of native vegetation is the most effective way to regenerate soil health, and control runoff and sediment yield. In Mediterranean areas, after a forestry proposal, it is highly common to register a significant number of losses for the saplings that have been introduced due to the lack of rainfall. When no vegetation is established, organic amendments can be used to rapidly protect the soil surface against the erosive forces of rain and runoff. In this study we investigated the hydrological effects of five soil treatments in relation to the temporal vari- ability of the available water for plants. Five amendments were applied in an experimental set of plots: straw mulching; mulch with chipped branches of Aleppo Pine (Pinus halepensis L.); TerraCotten hydroabsobent polymers; sewage sludge; sheep manure and control. Plots were afforested following the same spatial pattern, and amendments were mixed with the soil at the rate 10 Mg ha-1. In control plots, during June, July, August and September, soils were registered below the wilting point, and therefore, in the area of water unusable by plants. These months were coinciding with the summer mediter- ranean drought. This fact justifies the high mortality found on plants after the seeding plan. Similarly, soils have never exceeded the field capacity value measured for control plots. Conversely, in the straw and pinus mulch, soils were above the wilting point during a longer time than in control plots. Thus, the soil moisture only has stayed below the 4.2 pF suction in July, July and August. Regarding the amount of water available was also higher, especially in the months of December, January and February. However, the field capacity value measured has not showed any differences regarding the control. For these treatments, the survival sapling rates measured were the highest. Sludge, manure and polymers showed a moisture retention capacity slightly more limited than straw and pinus mulch. Likewise, it has been found that the area of usable water by plants was also lower, especially during the months of January and February. This situation is especially sharpened in plots amended with manure. In this treatment, the upper part of the soil profile was below the wilting point for six months a year (from April to August). For this treatment, the survival sapling rates measured were the lowest. In conclusion, from a land management standpoint, the pinus and straw mulch treatments have been shown as effective methods reducing water stress for plants. In this research, mulching has been proved as a significant method to reduce the mortality sapling rates during the mediterranean summer drought.